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Abstract. We carry out a joint analysis of the hyperfine spin-spin splitting (HFS) and the Zeeman effect
in the framework of Pure Bound Field Theory (PBFT) we recently suggested (A.L. Kholmetskii et al.

Eur. Phys. J. Plus 126 (2011) 33; 126 (2011) 35), where the PBFT corrections to the known results
have a similar form due to the common physical origin of both effects. We consequently consider the
hydrogen atom, positronium, muonium and muonic hydrogen atom and show that for the Zeeman effect
in muonic hydrogen, the PBFT correction occurs measurable and its presence/absence can be subjected
to an experimental test, which thus will be crucial for the verification of PBFT versus the common theory.
Concurrently we derive the PBFT correction to the muon mass, which is cancelled in the joint analysis of
HFS and Zeeman effect, but can be revealed in muon-spin-precession–resonance experiments with enhanced
precision. As a result, we achieve better agreement between the estimations of the muon mass in different
experiments. In addition, we have shown that the PBFT correction to the proton Zemach radius is one
order of magnitude smaller than the measurement uncertainty and can be well ignored, unlike the case of
the proton charge radius.

1 Introduction

Recently we suggested the Pure Bound Field Theory (PBFT) [1,2], which explicitly takes into account the non-
radiative nature of the electromagnetic (EM) field of bound charges in the stationary energy states. We have shown
that the absence of EM radiation for true quantum systems demands modifying dynamical parameters of electrically
bound charges, in order to fulfill the momentum conservation law [1–3]. In particular, for the one-body problem, the
rest mass of the electron m is replaced by bnm, while the electric interaction energy U is replaced by γnU . Here bn,
γn are the specific coefficient of PBFT, which to the order α2 are defined by the relationships [1]

bn = 1 − (Zα)2/n2, γn =
(

1 − (Zα)2/n2
)−1/2

,

where α is the fine structure constant, Z is the atomic number, and n is the principal quantum number. This approach
can be naturally extended to the quantum two-body problem, which prompted us to repostulate the Breit equations
without the external field in the appropriate way, giving rise to the development of PBFT in the form of an effective
theory [1,2]. Thus it does not touch the diagram technique of QED, though the modifications of dynamical parameters
of electrically bound charges are also implied in QED of bound states [2]. Such a theory gives the same gross as well
as fine structure of atomic energy levels, as those furnished by the conventional approach, for hydrogenlike atoms.
However, the approach of PBFT does induce corrections to the energy levels at the scale of hyperfine interactions, which
at once remove a number of subtle discrepancies between theory and experiment in the atomic physics. In particular,
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the PBFT corrections practically eliminate the available up-to-date deviation between theory and experiment for the
1S–2S interval and 1S spin-spin splitting in positronium [2].

In addition, PBFT gives the quantitative agreement between theory and experiment for the lifetime of bound
muon in meso-atoms [4]. Another result of significant importance is the PBFT re-estimation of the proton charge
radius derived via the 2S-2P Lamb shift for hydrogen and muonic hydrogen, which yields rp = 0.841(6) fm [2]. This
value is about 4% smaller than the modern CODATA value rp = 0.876(6) fm [5], but perfectly agrees with the latest
estimation of proton size via the measurement of 2S-2P Lamb shift in muonic hydrogen, i.e. rp = 0.84184(67) fm [6].
The intriguing point is that the latest experiments on electron scattering by protons, carried out after the publication
of the work [6], give the proton charge radius still near the CODATA value [7,8]. At this point, one should stress
that the PBFT corrections are applicable only to the non-radiating bound system, and this theory is not extended to
freely moving particles. Hence, no PBFT corrections may emerge, when the scattering experiments are analyzed. Thus,
the obvious contradiction between the results of spectroscopic measurements in muonic hydrogen [6] and scattering
experiments [7,8] allow us to assume the presence of some non-accounted physical effect either in the processing of
spectroscopic data, or in the processing of electron scattering data. In this connection further independent experimental
verification of PBFT, which definitely supports spectroscopic data, seems topical for localization of search area for
such non-accounted effect.

To be successful, any new theory of bound states like PBFT should provide not only improvement in the co-
incidence of the theory and experiment in cases where QED predictions show some discrepancy with experimental
data, but also should not destroy the excellent agreement of the majority of QED calculations with measurements.
As commonly known the formalism of quantum field theory is extremely constraining, after one selects a set of fields
and a Hamiltonian/Lagrangian there are essentially no ambiguities left. This peculiarity does not allow to “tune” the
Lagrangian in QED to achieve better agreement with experimental data for some parameters without destroying such
an agreement for others. Therefore at the current stage of research it is very important to check PBFT results for all
measured values in the precision physics of hydrogenlike atoms, since requirement for the absence (or negligible values)
of PBFT corrections, in the cases where QED gives good agreement with observable data, should be considered as of
equal importance with the cases where PBFT eliminates discrepancy between theory and experiment.

Within this framework in the present contribution, we continue to analyze hyperfine spin-spin splitting (HFS)
in various hydrogenlike atoms, where the specific corrections of PBFT result not only due to the proper modifi-
cation of dynamical parameters of bound particles, but also due to the re-estimation of their magnetic moments
implemented via the Zeeman effect. Since the spin-spin interaction and Zeeman effect have a common physical ori-
gin, the PBFT corrections to the Hamiltonian of spin-spin interaction and to the Hamiltonian of interaction of
spin with an external magnetic field acquires a similar character. Thus, in the case of Zeeman effect such correc-
tions should be involved to the re-estimation of magnetic moments for constituents of atom. These circumstances
determine the goal of the present paper, which is two-fold: to achieve better agreement between the estimations
of the muon mass in different experiments and to suggest new independent tests of PBFT. One of them is the
precise measurements of Zeeman effect in the muonic hydrogen atom; the other one is the repetition of muon-spin-
precession–resonance experiments aimed to measure the muon magnetic moment and its mass with an enhanced
precision.

The paper is structured as follows. For the convenience of the reader, in sect. 2 we reproduce the Breit equation
without external field repostulated in PBFT framework [1], and present the method of its solution based on perturba-
tion theory. In sect. 3 we separately consider the contribution due to spin-spin interaction and derive specific PBFT
corrections to spin-spin interval for the nS state of hydrogenlike atom, which includes two components. One of them
directly stems from the PBFT modification of dynamical parameters of bound particles for the quantum two-body
problem, while the second component of the correction is related to the re-estimation of magnetic moments for both
bound particles, based on the analysis of Zeeman effect in PBFT framework. Combining both kinds of correction, we
achieve the PBFT expression for the HFS and analyze its implications in sects. 3.1–3.4 for various hydrogenic atoms.
In particular, we show that for muonium these corrections cancel away, so that the calculated nS spin-spin interval
has the same value in PBFT and in the common approach. In contrast, for positronium, both corrections are strongly
unequal to each other, and the resultant PBFT correction is not vanished. With this correction we obtain better
agreement of PBFT calculations with the measured 1S spin-spin interval, than in the common theory, as already
pointed out in ref. [2].

The analysis of PBFT corrections we carry out allows revealing the most interesting case, where PBFT can be
subjected to a new independent test: it is the Zeeman effect in a strong magnetic field for muonic hydrogen, as
compared with the Zeeman effect in muonium (sect. 3.4). The recoil effects in these atoms differ from each other
more than one order of magnitude, which causes the measurable difference of PBFT corrections to the Zeeman effects
(about 10 ppm) that can be subjected to an experimental test. Concurrently we stress that PBFT corrections to the
Zeeman effect imply the introduction of a related correction to the magnetic moment of muon and, correspondingly,
to its rest mass. The predicted correction to muon mass exceeds the present measurement uncertainty, and we discuss
possible ways for the new independent measurement of muon magnetic moment and its mass in sect. 3.5. Finally, we
conclude in sect. 4.
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2 Breit equation without external field in PBFT and its solution

For two bound charged particles with masses m, M and charges e, Ze, correspondingly, the Breit equation in the
PBFT framework acquires the form [1]:

(Hb0 + Hb1 + . . . + Hb5) ξ (rm, rM ) = Wξ (rm, rM ) , (1)

where ξ(rm, rM ) is the wave function having 16 spinor components, rm, rM are the position vectors for each particle,
W is the energy, and the Hamiltonian components Hbi are determined by the equations based on the correspondent
Breit’s expressions [9]

Hb0 = −γmnγMn
Ze2

r
+

1

2

(

1

bmnm
+

1

bMnM

)

p2
b , (1a)

Hb1 = −
1

8c2

(

1

bmn
3m3

+
1

bMn
3M3

)

pb
4, (1b)

Hb2 = −
Ze2

2bmnbMnmMc2

1

r

(

pb
2 +

1

r2
r · (r · pb) pb

)

, (1c)

Hb3 = −γmnγMn
r × pb

r3

(

Ze2h̄

2bmn
2m2c2

sm +
Ze2h̄

2bMn
2M2c2

sM +
Ze2h̄

bmnbMnmMc2
sm +

Ze2h̄

bmnbMnmMc2
sM

)

, (1d)

Hb4 = −
iZe2h̄

2c2

(

1

bmn
2m2

+
1

bMn
2M2

)

pb · ∇
1

r
, (1e)

Hb5 =
Ze2h̄2γmnγMn

bmnbMnmM

(

−
8π

3
(sm · sM ) δ(r) +

1

r3
(sm · sM − 3smrsMr)

)

, (1f)

and the coefficients bmn, bMn, γmn, γMn are determined to the order (Zα)2 by the equations

bmn =

(

1 −
(Zα)2

n2

M

M + m

)

, (2a)

bMn =

(

1 −
(Zα)2

n2

m

M + m

)

, (2b)

γmn =

[

1 −
(Zα)2

n2

M2

(m + M)2

]−1/2

, (2c)

γMn =

[

1 −
(Zα)2

n2

m2

(m + M)2

]−1/2

. (2d)

Here pb = pmb = −pMb is the canonical momentum, smr = sm·r

r (s is the spin operator), and r = rm − rM .

The first operator Hb0 of eq. (1) represents the PBFT counterpart to the conventional Schrödinger operator;
Hb1 is the relativistic expansion of Hb0; the operator Hb2 takes into account the retardation in the interaction of
two particles; Hb3 describes spin-orbit interaction; Hb4 is responsible for the contact interaction, and Hb5 stands for
spin-spin interaction.

We emphasize that the operators (1a)–(1f) stem from the corresponding common Breit operators (see, e.g., [9]),
modified by the PBFT replacements [1]

m → bmnm, (3a)

M → bMnM, (3b)

U → γmnγMnU, (3c)

E → γmnγMnE, (3d)

B → γmnγMnB. (3e)

By analogy with ref. [10], it is convenient to reduce the Breit equation to the Schrödinger-like type

[

p2
b

2mbmn
+

p2
b

2Mbmn
− γmnγMn

Ze2

r
−

p4
b

8m3bmn
3c2

−
p2

b

8M3bMn
3c2

+ Ub (pb, r)

]

ψ(r) = Wψ(r), (4)
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where W is the energy, and the term Ub(pb, r) is equal to

Ub(pb, r) = −
πZe2h̄2

2c2

(

1

bmn
2m2

+
1

bMn
2M2

)

δ(r) +
Ze2

2bmnbMnmMr

(

p2
b +

r · (r · pb) pb

r2

)

−
Ze2h̄γmnγMn

4bmn
2m2c2r3

(r × pb) · σm −
Ze2h̄γmnγMn

4bMn
2M2c2r3

(r × pb) · σM

−
Ze2h̄γmnγMn

2bmnbMnmMc2r3
((r × pb) · σM + (r × pb) · σm)

+
Ze2h̄γmnγMn

4bmnbMnmMc2

(

σm · σM

r3
− 3

(σm · r) (σM · r)

r3
−

8π

3
σm · σMδ(r)

)

. (5)

Here σ stands for the Pauli matrix.
The obtained eqs. (4) and (5) differ from their common counterparts by the appropriate introduction of the

correction coefficients of PBFT (bmn, bMn, γmn, γMn), which differ from unity in the order (Zα)2. Thus, in order to
solve eq. (4), one can apply the perturbation theory approach, which is realized in the most convenient way via the
substitution

r = r′/ (bmnbMnγmnγMn) . (6)

This substitution allows us to present the Hamiltonian in eq. (4) as the sum of the Schrödinger-like term and per-
turbation. Indeed, taking into account that p2

b = −h̄2∇2
r = −bmn

2bMn
2γmn

2γMn
2h̄2∇2

r′ , we transform eq. (4) as
follows:
[

−
h̄2∇2

r′bMn

2m
−

h̄2∇2
r′bmn

2M
−

Ze2

r′
+

1

bmnbMnγmn
2γMn

2

(

−
p4

b

8m3bmn
3c2

−
p2

b

8M3bMn
3c2

+ Ub (pb, r
′)

)
]

ψ(r′) = W ′ψ(r′),

(7)
where

W ′ = W/
(

bmnbMnγmn
2γMn

2
)

. (8)

The obtained eq. (7) complemented by the expressions (2), (5), (6) and (8) represents the basic equation for the
quantum two-body problem within the framework of PBFT [1,2] and, as shown in ref. [1], eq. (7) yields the same
gross and fine structure of the atomic energy levels, as the one furnished by the common approach.

Thus the corrections of BPFT to the common solutions of equations of atomic physics (still without spin-spin
interaction and radiative corrections) may emerge at least in the order (Zα)6, which corresponds to the scale of
hyperfine interactions. Here one should recall that eq. (7) itself, like the original Breit equation, is semi-relativistic,
and it is valid to the order (Zα)4, where α is the fine structure constant. At the same time, the factors bmn, bMn,
γmn and γMn, being explicitly determined to the orders (Zα)2 and (Zα)4 [2], allow us to analyze the specific PBFT
corrections to the order (Zα)6, and the determination of these corrections is one of the important issues of PBFT.

We further notice that without the term of spin-spin interaction, eq. (7) determines the PBFT correction to
the fine structure, which has the order of magnitude (Zα)6m/M and its terms scale as n−5 or n−6 [2]. Hence,
in practice it occurs significant for the 1S state only. For the case of hydrogen, such a correction has the value
10.8 kHz for the 1S state [2], and along with radiative corrections to the ground state the Lamb shift plays an
important role in the re-estimation of the proton charge radius extracted via the 1S Lamb shift, providing the value
rp = 0.846(12) fm [2]. This value practically coincides with the proton size extracted via the classic Lamb shift
already mentioned earlier (rp = 0.841(6) fm). The fine structure correction occurs also significant for the 1S state
of positronium, where m = M = me (me being the electron rest mass). Along with the PBFT correction to the
annihilation term, it practically eliminates the available up to date discrepancy between theory and experiment with
respect to 1S–2S interval [2].

In the next section we analyze separately the correction to the HFS, which, as we will see below, in PBFT framework
should be complemented by the correction to the Zeeman effect, too.

3 Hyperfine spin-spin interaction and Zeeman effect in PBFT: Joint analysis

Now we evaluate the contribution of the hyperfine spin-spin interaction to the atomic energy levels in the PBFT
framework, described by the operator

(VPBFT(r))s−s =
Ze2h2γmnγMn

4mbmnMbMnc2

(

σm · σM

r3
− 3

(σm · r) (σM · r)

r5
−

8π

3
(σm · σM ) δ(r)

)

(9)
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(the last term of eq. (5)). Being expressed via r′-coordinates, this operator reads

(VPBFT(r′))s−s = bmnbMnγmn
2γMn

2 e2h2

4mMc2

(

σm · σM

r′3
− 3

(σm · r′) (σM · r′)

r′5
−

8π

3
(σm · σM ) δ(r′)

)

, (10)

where we have used eq. (6), the equality δ(r) = bmn
3bMn

3γmn
3γMn

3δ(r′), and also taken into account that, after the
substitution of this operator in eq. (7), it acquires the factor 1/bmnbMnγmn

2γMn
2. Designating

(V (r′))s−s =
e2h2

4mMc2

(

σm · σM

r′3
− 3

(σm · r′) (σM · r′)

r′5
−

8π

3
(σm · σM ) δ(r′)

)

(11)

(the common Hamiltonian of spin-spin interaction expressed via r′-coordinates), and substituting expressions (2a)–(2d)
for the PBFT factors, determined with the sufficient accuracy (Zα)2, we obtain

(VPBFT(r′))s−s =

(

1 −
(Zα)2

n2

2mM

(M + m)2

)

(V (r′))s−s . (12a)

This relationship should be averaged with the non-relativistic wave function, which, as we mentioned above, has
the known Schrödinger form in the r′-coordinates. Hence eq. (12a) is also valid for the energy of spin-spin interaction

(WPBFT)s−s =

(

1 −
(Zα)2

n2

2mM

(M + m)2

)

Ws−s. (12b)

Here Ws−s stands for the spin-spin interval calculated in the common approach, which, like the source operator (12a),
contains the ratios gmσm/m, gMσM/M for both particles, which are determined experimentally by means of the
Zeeman effect.

Here it is worth to stress that a direct measurable value in the Zeeman effect is the magnetic moment µ = ges/m
for each particle. However, in the derivation of specific PBFT corrections to Zeeman splitting and HFS, the quantities
expressed via spin operators occur more convenient than the quantities expressed via magnetic moments. At the same
time, in the comparison of experimental results with calculated data, the corresponding equations must be finally
expressed through the magnetic moments of both particles as the directly measured values. This remark is important
for the analysis carried out below.

As known, the operator of interaction of two bound particles (electron and nucleus) in the nS-state with a weak
external magnetic field reads [9]

Vmag = gm
eh̄

2m
(sm · B) − gM

Zeh̄

2M
(sM · B) , (13)

where gm, gM are the g-factors for bound particles with the masses m and M , correspondingly. Being added to the
Breit operator of eq. (3), along with the PBFT corrections (3a)–(3e), this operator acquires the form

(VPBFT)mag =
1

bmnbMnγmn
2γMn

2

[

gm
eh̄

2mbmn
γmnγMn (sm · B) − gM

Zeh̄

2MbMn
γmnγMn (sM · B)

]

. (14)

Averaging this operator with the Schrödinger wave function ψ(r), due to the normalization requirement,

ψ(r) = (bmnbMnγmnγMn)
3/2

ψ(r′), (15)

implied by the transformation (6), we obtain

(

V̄PBFT

)

mag
≡ (Wb)mag = bmnbMnγmn

2γMn
2

[

gm
eh̄bMn

2m

(

sm · B
)

− gM
Zeh̄bmn

2M

(

sM · B
)

]

, (16)

where (WPBFT)mag gives the Zeeman splitting of energy levels in PBFT framework. Herein in the averaging of
(V̄PBFT)mag we can put B(r) = const, which is always fulfilled in the atomic scale.

Inserting eqs. (2a)–(2d) into eq. (16), we obtain for the nS-state

(WPBFT)mag =

(

1 −
(Zα)2

n2

2MZmZ

(mZ + MZ)2

) [

Wmag −
(Zα)2

n2

eh̄

2 (MZ + mZ)

(

(gmsm − ZgMsM ) · B
)

]

, (17)

(with the sufficient accuracy (Zα)2), where Wmag stands for the Zeeman splitting of energy levels, obtained via the
averaging of common operator (13). Here we supply the masses mZ, MZ by the subscript “Z” (“Zeeman effect”), in
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order to distinguish them from the masses m, M in eqs. (9)–(12), for the atom constituents used in the measurement
of spin-spin splitting.

For the sublevel F = 1 used for the measurement of Zeeman effect, sm − sM = 0, and eq. (17) reads

(WPBFT)mag =

(

1 −
(Zα)2

n2

2mZMZ

(mZ + MZ)2

)(

Wmag −
(Zα)2

n2

(gm − ZgM )eh̄

2(MZ + mZ)

(

sm · B
)

)

. (18)

Now we remind that the magnetic moments for the constituents of hydrogenlike atoms are determined experimen-
tally via the measurement of Zeeman effect in these atoms, and the PBFT correction (18) to this effect stipulates
the corresponding corrections to the magnetic moments for bound particles. One can see that such corrections, being
accounted in the expression for the common hyperfine spin-spin splitting Ws−s of eq. (12b), induce a decrease the

total PBFT correction in comparison with the factor (1 −
(Zα)2

n2

2mM
(M+m)2 ) appeared in eq. (12b).

Having obtained eqs. (12b) and (18), we are now in the position to analyze HFS in various hydrogenlike atoms
with the derivation, when necessary, the total PBFT correction, taking into account the correction to the Zeeman
effect and related correction to magnetic moments of bound particles.

3.1 Hydrogen

For the ratio of electron to proton masses me/Mp ≈ 1836, the correction of eq. (12b),

δ (WPBFT)s−s = −
(Zα)2

n2

2meMp

(me + Mp)2
Ws−s, (19)

occurs much less than the present calculation uncertainty of HFS in hydrogen. Indeed, for the 1S state Ws−s =
1420 405.751 768(1) kHz [11], and according to eq. (19) at n = 1,

δ (WPBFT)s−s ≈ 80Hz, (19a)

while the nuclear structure contribution varies from tens to hundreds kHz [12–14]. Correspondingly, one can expect
that the correction (19a) does not alter the value of the proton Zemach radius evaluated via spin-spin interaction in
PBFT framework.

Let us demonstrate the validity of this assumption via the direct calculations, using the known expression [15,16]
for HFS, which includes the Zemach radius RZ,

WHFS = EF
(

1 + δQED + δrecoil + δpol + δhvp + δweak − 2αmepRZ

)

(20)

(in the units h̄ = c = 1). Here EF is the Fermi energy, δQED is the correction due to anomalous magnetic moment
of electron and the high-order (α4 and higher) QED contributions, δrecoil collects the contribution of all terms which
depend on the ratio m/M , δpol in the proton polarizability correction, δhvp describes the strong interaction effects
outside the proton, δweak is the weak interaction term, and

mep = meMp/ (me + Mp) (21)

is the reduced mass of the bound electron (m = me) and proton (M = Mp).
In practice the Zemach radius is evaluated by the comparison of experimental data for the hyperfine spin-spin

interval in hydrogen with theoretical value (20) and its modern value is equal to [16]

RZ = 1.045(16) fm. (22)

Now we want to re-evaluate the Zemach radius in the framework of PBFT, which results from the PBFT correction
to spin-spin interaction (eq. (12b)).

Combining eqs. (20) and (12b) for the case of hydrogen, we obtain

(WPBFT)
H
HFS =

(

1 −
2meMpα

2

(Mp + me)2

)

EF
(

1 + δQED + δrecoil + δpol + δhvp + δweak − 2αmep(RZ)PBFT

)

. (23)

Using eqs. (20), (21) and (23), we determine the difference between the values (RZ)PBFT and RZ, which gives the
change of Zemach radius in PBFT in comparison with the common value (22)

δ(RZ)HPBFT = (RZ)PBFT − RZ = −
1

2αmep

WHFS

EF

[(

1 −
2meMpα

2

(Mp + me)2

)

− 1

]

=
1

mep

meMpα

(Mp + me)2
WHFS

EF
≈

α

Mp + me
.
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Here we put WHFS/EF = 1, which is a sufficient approximation in the estimation of δ(RZ)PBFT. In usual units the
latter expression reads

δ(RZ)HPBFT =
h̄α2

(Mp + me)c
. (24)

After the substitution of corresponding numerical values in eq. (24) we obtain

δ(RZ)HPBFT = 1.1 · 10−3 fm. (25)

The value (25) is more than one order of magnitude less than the present measurement uncertainly of RZ (see
eq. (22)) and can be well ignored.

The obtained result exempts us from any need to introduce into eq. (12b) the PBFT correction to the magnetic
moments for both the electron and proton, which stems from the modified eq. (17) for Zeeman effect. As we have
mentioned above, this kind of correction can only reduce the value (25).

3.2 Positronium

For positronium m = M = me, and eq. (12b) takes the form

(WPBFT)
Ps
s−s =

(

1 −
(Zα)2

2n2

)

WPs
s−s. (26)

The correction of eq. (26) strongly dominates over the PBFT correction to the magnetic moments of electron (positron),
because the latter is determined via the Zeeman effect in atoms, where mZ ≪ MZ. Thus eq. (26) can be directly involved
to the re-estimation of HFS in positronium. In particular, it reduces the 1S hyperfine interval from the commonly
calculated value WPs

HFS = 203 391.7(8)MHz [12] to (WPBFT)Ps
HFS = 203 386.0(8)MHz. This estimation better agrees

with the available experimental data 203 389(2)MHz [17] and 203 387(2)MHz [18], than the common calculated result.

3.3 Muonium

For this atom we put in eq. (12b) m = me, M = mµ (the muon mass). Besides, in eq. (18) we replace gm → ge,
gM → gµ and put with the high accuracy ge = gµ in the correcting term of the order (Zα)2. In this equation we also
take mZ = me, MZ = mµ, so that eq. (17) acquires the form

(WPBFT)
Mu
mag =

(

1 −
(Zα)2

n2

2memµ

(me + mµ)2

)

WMu
mag. (27)

Comparing now eq. (27) with the PBFT expression for spin-spin interval (12b) in muonium (where we also put
m = me, M = mµ), we reveal that in both cases (Zeeman effect and HFS), the correction of PBFT is exactly the
same.

Now we again remind that the magnetic moment of muon µµ entering into eq. (12b) for spin-spin interval is
extracted via the comparison of calculated and experimental data for the Zeeman splitting in muonium (27)1. Since

in common theory the PBFT correction
(

1 −
(Zα)2

n2

2memµ

(me+mµ)2

)

does not appear in eq. (27), we have to conclude that

the common approach leads to underestimation of muon magnetic moment, i.e.

(µµ)c =

(

1 −
(Zα)2

n2

2memµ

(me + mµ)2

)

(µµ)PBFT. (28)

The subscript “c” means “common”, and here we suppose that PBFT is the correct theory, so that (µµ)PBFT represents
the true value of the magnetic moment for muon. Then, after the substitution of (µµ)PBFT in eq. (12b), we see that
both correcting factors of eqs. (27) and (12b) cancel away, and we arrive at the common expression for spin-spin
interval in muonium, which, as known, for the 1S state perfectly agrees with experimental data (e.g., [11]).

1 Here we adopt that PBFT correction to electron’s magnetic moment is much smaller than the correction to the muon’s
magnetic moment, insofar as the former is measured for atoms, where the ratio m/M is much smaller than the ratio me/mµ.
In particular, one can show that the PBFT corrections to electron’s g-factor and its rest mass do not exceed the present
uncertainties in their determination.
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However, we point out that in this way the conventional approach has got the false value of magnetic moment
(µµ)c, as eq. (28) shows. Presenting now the magnetic moment in the explicit form,

µµ = gµesµ/mµ,

we further take into account that the g-factor for bound muon and its spin are both determined with much better
precision that muon mass [11] and hence the uncertainty of their determination can be ignored in further analysis.
Thus the deviation of (µµ)c from the true value (µµ)PBFT induces overestimation of muon rest mass, i.e.2

(mµ)c = (mµ)PBFT

/ (

1 −
(Zα)2

n2

2memµ

(me + mµ)2

)

. (29)

Summarizing this analysis, we finally emphasize that for the muonium atom, being considered in PBFT framework,
the expressions for spin-spin interval and Zeeman splitting are scaled exactly by the same correcting factor. Since the
experiments of both kinds are entangled to each other through the magnetic moment of muon, the related data
occur insensitive to the PBFT correction to magnetic moment of muon (28) and to its mass (29). As a result, the
spectroscopic data for muonium are not suitable for an experimental test of PBFT, even if this theory predicts the
lower value of true muon mass (29) in comparison with its present estimation.

A quite different situation emerges for the muonic hydrogen atom, where the increase of the ratio of m/M by two
orders of magnitude in comparison with hydrogen and one order of magnitude in comparison with muonium, makes
the specific effects of PBFT to be observable, at least in principle, in the measurement of Zeeman splitting.

3.4 Muonic hydrogen

For this atom we use m = mµ, M = Mp (the proton mass) for the two-body problem. Thus the factor (Zα)2

n2

2mM
(m+M)2

entering into PBFT correction of eqs. (12b) and (18), occurs one order of magnitude larger than for muonic hydrogen,
and two orders of magnitude larger than for hydrogen.

Nevertheless, in the analysis of spin-spin splitting, such an increased value of PBFT correction does not lead to
any measurable deviations from the common results. The reason is a large contribution of nuclear size effect in muonic
hydrogen, which masks the corrections of PBFT. In particular, let us show that the Zemach proton radius estimated
for muonic hydrogen in the framework of PBFT does not lead to its deviation from the common value (22) within the
present uncertainty.

This result can be immediately obtained via combining eqs. (20), (21) and (23) for the case of muonic hydrogen.
Hence we obtain

δ(RZ)muonic H
PBFT =

h̄α2

(Mp + mµ)c
. (30)

After the substitution of the corresponding numerical values in eq. (30) we get

δ(RZ)muonic H
PBFT = 1.0 · 10−3 fm. (31)

Thus, like for the case of hydrogen (eq. (25)), the PBFT correction (31) to the Zemach radius is more than one
order of magnitude less than its present measurement uncertainly (see eq. (22)) and can be well ignored. Since the
PBFT correction to the spin-spin interval scales as n−2, the same conclusion holds true for the 2S hyperfine splitting,
too.

However, for the Zeeman effect in muonic hydrogen, the PBFT corrections to common calculations are substantial
and can be subjected to an experimental test.

First of all, we address to the general equation (18) for PBFT correction to Zeeman effect and observe that now
gµ �= gp (gµ ≈ 2.0, gp ≈ 5.6), so that the correcting term containing the difference (gµ − gp) is not vanishing. However,

2 The PBFT re-estimation (29) to muon mass forces us to remember that the normalizing coefficient in the wave function
used for averaging of operators of spin-spin interaction (11) and Zeeman effect (14), contains the reduced mass of electron and

muon mR = (
memµ

me+mµ
) to the 3/2 power [19]. Hence one can see that in this case eq. (28) should be replaced by the relationship

(µµ)c(mR)3c =

„

1 −
(Zα)2

n2

2memµ

(me + mµ)2

«

(µµ)PBFT(mR)PBFT
3.

However, the simple calculations (which are omitted here for brevity) show that the PBFT correction to reduced mass occurs
much smaller than the correction to the muon magnetic moment (28) and the related correction to muon mass (29). Thus
eqs. (28) and (29) can be left unchanged.
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one can easily realize that it is one order of magnitude smaller (as the ratio mµ/Mp) than the leading correcting term

in the expression
(

1− (Zα)2

n2

2mµMp

(mµ+Mp)2

)

Wmag issuing from the interaction of muon magnetic moment with an external

magnetic field, entering into Wmag. Thus, in the qualitative estimation of PBFT correction to the Zeeman effect, the
last term in rhs of eq. (18) can be neglected, and this equation takes the form

(WPBFT)mag =

(

1 −
(Zα)2

n2

2mµMp

(mµ + Mp)2

)

Wmag. (32)

Now we recall that the energy Wmag contains the terms to be proportional to the magnetic moment of muon (µµ)c
and proton (µp)c, and the PBFT correction to (µµ)c determined by eq. (28) dominates over the correction to (µp)c.
What is more, for the muonic hydrogen atom the correction (28) can be ignored in comparison with the correcting
factor of eq. (32). Hence we come to conclude that eq. (32) can be taken for the determination of the total PBFT
correction to the Zeeman effect in muonic hydrogen at least in the qualitative analysis.

For the 1S state and for the ratio mµ/Mp ≈ 207/1836, the factor

(Zα)2

n2

2mµMp

(mµ + Mp)2
≈ 0.95 · 10−5 (33)

characterizes the relative deviation of the result expected in PBFT framework from the common calculations of Zeeman
splitting implemented with the Breit-Rabi expression [10]

W±

m = −
Ws−s

4
− gµµpmB ±

Ws−s

2

√

1 + 4mx + x2. (34)

Here B stands for the external magnetic field,

x =
(gµJ + gµ (µp/µµ)) µµB

Ws−s
,

gµJ = gL
j(j + 1) − s(s + 1) + l(l + 1)

2j(j + 1)
+ gL

j(j + 1) + s(s + 1) − l(l + 1)

2j(j + 1)
,

j = l + s, where l is the orbital angular momentum, and s is the spin.
One can expect the measuring uncertainly for the Zeeman splitting of 1S level about 1 ppm, which makes the

correction (33) to be observable in NMR measurements for muonic hydrogen in the presence of external magnetic
field.

In order to estimate the absolute value of deviation between Zeeman effect of 1S state in common theory and
PBFT, we use the results of calculations of [20], which on the basis of eq. (34) give the value of the Zeeman splitting
for 2S1/2-2P3/2 transition (mF = +1,−1) about 20MHz for B = 5T. Adopting approximately the same splitting for
the 1S state (which corresponds to the condition x ≪ 1 in eq. (34)), and taking the external magnetic field strength
about 50T (which can be achieved in the pulse mode), we get the value of Zeeman splitting about

∆WZ ≈ 200MHz. (35)

Thus, in a view of eq. (33), the deviation between PBFT and common result becomes

δW = −
(Zα)2

n2

2mµMp

(mµ + Mp)2
∆WZeeman ≈ −2 kHz. (36)

Now we remind that the accuracy of measurement of HFS in muonium is about 50Hz, which is much less than the
value (36). Assuming that the same uncertainly can be achieved in the measurement of Zeeman effect in 1S state of
muonic hydrogen, we come to conclude that the value (36) should be observable in modern experiments.

3.5 PBFT re-estimation of muon mass

Thus, if the decrease of Zeeman splitting in the muonic hydrogen atom by about 2 kHz in comparison with commonly
expected value will be detected, as eq. (36) predicts, this result would simultaneously mean that the muon mass should

be re-estimated according to eq. (29). Numerically the correcting factor in eq. (29) (Zα)2

n2

2memµ

(me+mµ)2 for the 1S state is

equal to 2.552 · 10−7. Therefore, using the present CODATA value for the muon mass [21]

(mµ)CODATA = 206.768 2843(52)
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Fig. 1. Reproduced from ref. [11], where we indicated the updated CODATA value for muon mass. The PBFT re-estimations
of muon mass for Mu hfs experiment [22] and Mu 1s Breit-Rabi experiment [22] are indicated by triangles.

(expressed in the units of electron’s mass), we derive the new (according to PBFT, true) value of the muon mass

(mµ)PBFT = 206.768 3371(52).

One can see that the difference between (mµ)PBFT and (mµ)CODATA is one order of magnitude larger than the
uncertainty in determination of muon mass presented by CODATA. However, here one should emphasize that this
uncertainty is mainly determined by the accuracy of HFS experiment in muonium [22], which is much smaller than
the uncertainty of other known experiments for the measurement of mµ [23,24]. At the same time, we have shown
above that the PBFT correction to muon mass (29) occurs unaccounted in HFS experiment in muonium. It means
that, according to PBFT, the muon mass to be found in this experiment should be divided by the correcting factor of
eq. (29). This circumstance becomes principal in the comparative analysis of different experiments for the determination
of muon mass.

In fig. 1 we reproduce the plot from ref. [11], where the results of measurement of mµ in various experiments are
collected. We complement this plot by the present CODATA value of mµ, as well as by the PBFT re-estimation of
muon mass on the basis of eq. (29) for HFS muonium experiment (Mu hfs [20]), and for the latest Zeeman effect
experiments (Breit-Rabi, 1999 [22]), indicated by triangles. We see that these re-estimated values are much closer to
the mean value of mµ obtained in the measurement of 1S–2S interval in muonium (Mu 1s–2s) [23] and in muon-spin-
precession–resonance (MSR) experiment [24]. A large uncertainty of Mu 1s–2s experiment [23] allows us to exclude
it from further analysis. Concerning MRS experiment [24], we especially emphasize that it is free from any PBFT
corrections and thus it can be classified as the basic experiment, which directly yields the correct muon mass.

At the moment, a comparably large uncertainty of the result of MRS experiment [24] does not allow making a
crucial choice either in the favor of PBFT, or against PBFT. We see that both the common results and the PBFT
prediction with respect to the muon mass lie within the range of uncertainty of this experiment, though the PBFT
re-estimations are substantially closer to the mean value of muon mass extracted from MRS measurements, than the
common results. Thus, new high-precision MRS measurements are required for the crucial test of PBFT, aimed for
the determination of true muon mass.

4 Conclusion

In the present contribution we have analyzed hyperfine spin-spin splitting (HFS) in various hydrogenlike atoms and
suggested two new independent tests of PBFT, which we had developed earlier. One of them is based on the measure-
ment of Zeeman effect of 1S level of muonic hydrogen in a strong (about 50T) magnetic field. The predicted deviation
between common result and PBFT calculation is about 2 kHz (or 10 ppm in relative units), which can be measured by
NMR method, where the measurement uncertainly should be at least one order of magnitude smaller. Another inde-
pendent test of PBFT can be done in the repetition of the MRS experiment with an enhanced precision in comparison
with the known experiment [24]. Unlike the HFS and Zeeman experiments, the results of MRS measurements with
respect to estimation of muon mass do not imply any PBFT corrections and thus, if the precision of this experiment
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will be improved, it will be capable to distinguish the difference in predictions of muon mass derived in the common
approach and in the framework of PBFT.

We emphasize that the proposed new experimental test of PBFT (which presently gives the amazing coincidence
between calculated and measured data in precise physics of simple atoms [2]) is not only significant from a general
viewpoint, but seems to be very topical in the resolution of the available remarkable disagreement between spectroscopic
data for muonic hydrogen [7] and scattering experiment [8,9] in the estimation of proton charge radius. Thus we believe
that the realization of the experiments proposed in the present paper, will shed light on the resolution of the proton-size
puzzle, too.

Finally, we notice that the PBFT corrections for hyperfine spin-spin splitting (HFS) in four different hydrogenlike
atoms analyzed in this paper show remarkable property —they do not destroy an agreement between theory and
experiment, where such agreement already exists and improve the coincidence with experiment where it is on due. In
particular for the proton dimensional parameters PBFT predicts the reduced value of proton charge radius by about
4% in comparison with the modern CODATA value [2], but leaves the proton Zemach radius practically unchanged
(see eqs. (25) and (31)) in comparison with the currently adopted value (22). The latter result can be also subjected
to the experimental test in spectroscopy of the muonic hydrogen atom [6].
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