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UNIFICATION OF SPACE-TIME-MATTER-ENERGY*
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Abstract. A complete description of space-time, matter and energy is given in Einstein’s
special theory of relativity. We derive explicit equations of motion for two falling bodies, based
upon the principle that each body must subtract the mass-equivalent for any change in its kinetic
energy that is incurred during the fall. We find that there are no singularities and consequently
no blackholes.
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Introduction

Special Relativity has proven itself to be an exceptionally powerful theory that has revolution-
ized human understanding of the material universe in the 20th Century [4], [11]. The purpose
of the present article is to show how by imposing a strict local conservation of energy in the
special theory of relativity, the theory takes on a new elegance and universality.

Einstein, stating that all inertial frames are equally valid, based his special theory of relativity
on the principle of relativity of Galileo [8], [9], [10], [13], [15]. On the other hand, Einstein’s
Principle of Equivalence identifying “gravitational mass” with “inertial mass”, upon which he
based his general theory of relativity, asserts that the effects of gravity and acceleration are
indistinguishable [7]. The principle of equivalence between acceleration and gravitation leads to
inconsistencies in the breaking of the laws of conservation of energy and momentum [25], [26],
and the breaking of the mass-energy equivalence expressed in the famous formula E = mc2,
which is one of the pillars of the special theory of relativity [27], [28], [29]. An interesting
discussion of the origin of this famous formula can be found in [2].

There are other objections that can be raised to the general theory of relativity, particularly
in regards to the existence of singularities [31]. Both Yilmaz and Logunov have proposed ex-
ponential metrics (yielding no black holes) [24], [46], instead of the Schwarzschild metric [32],
[33]. Yilmaz went further to question whether in Einstein’s general theory Newton’s apple would
actually fall [48]. Other authors have found that the principle of equivalence of gravitational
mass and inertial mass in general relativity is problematical for different reasons [22], [23], [24],
[44]. Indeed, it is shown in [46], [47], [48], that Einstein’s field equations are not satisfied in an
accelerated elevator. Also, see the references [1], [5], [6] and [17].
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Recently, a team led by A. Kholmetskii at Belarusian State University performed a Mossbauer
experiment to see how a nuclear clock mounted at the edge of a rotor is affected by rotational
motion. They were able to verify, with a high degree of precision, a prediction made by Yarman
et al. [17]. They found, contrary to the prediction made by Einstein [5], that the clock is not
only affected by its tangential velocity, but also by its binding to the acceleration field. The
overall time dilation is practically twice as much as predicted classically. These results, which
will soon appear, challenge the validity of the Principle of Equivalence in General Relativity,
and favor the predictions of our theory.

In [38], the second author considered how a single object would fall in the gravitational field
of a celestial object infinitely more massive. In what follows, we derive the exact equations of
motion for two bodies of arbitrary masses under the influence of any of the known elementary
forces in nature. In addition, we consider a simplified three body problem. We find that there
are no singularities, even in the case of point-like masses. Surprisingly, despite the inverse
square dependency of Newton gravitational attractive force, there still appears no singularity
at r = 0, owing to the fact that the smaller mass self-annihilates at exactly the point where
one would expect the singularity to occur. The two essential ingredients of our approach, in
the framework of Einstein’s special theory of relativity, are the principle of local conservation of
energy-momentum and the famous mass energy relationship E = mc2 .

Section 1, defines the concept of rest-mass utilized in our theory. Whereas Einstein, by his
equivalence principle, considers “inertial mass” and “rest-mass” to be equivalent, we believe
that there is a clear asymmetry between an accelerating elevator and a gravitational field. An
observer must get accelerated to be able to catch up with an accelerating elevator, whereas he
has to get decelerated in order to be able to land on the celestial body. In our theory, the first
process yields a mass increase, whereas the second one leads to a mass decrease [43]. It follows
that the idea that the rest-mass of an object is a fundamental constant of nature, must be
replaced by the concept of the instantaneous rest-mass of an object in a non-homogeneous field,
as was first done in [38].

Section 2, defines the concept of binding energy of a two body system to account for the
work done by any one or all of the four fundamental forces of nature. We express the ideas of
special relativity in the framework of the spacetime algebra (STA) of 4-dimensional Minkowski
space developed by D. Hestenes [18]. In STA, each relative frame of an observer is defined by a
unique, future pointing, Minkowski timelike unit vector tangent to the timelike curve called the
history of that observer. The exact relationship between STA and the 3-dimensional Euclidean
space of the World of experience has been further explored in [36]. The rich structure of lower
dimensional Minkowski spaces has recently been studied in [16] and [37].

Section 3, calculates the change of mass for each mass in a closed two body system as a
function of the total binding energy of the two bodies, as they move under whatever the forces
of nature. We find explicit formulas both for the masses and also for the velocities of the two
masses. All our calculations are based upon the simple principle that each body, as it moves
under the forces of nature, must subtract the mass-equivalent for any change in its kinetic energy.

Section 4, considers the binding energy due to Newton’s gravitational force between two
bodies. We derive explicit solutions where possible, and a numerical solution for the cases when
this is not possible. We also consider the simplified three body problem on a straight line and
where two of the bodies have the same mass. It is surprising that the inverse square dependency
of both Newton’s law for gravitational attraction, and the Coulomb force law, can be derived as
a requirement imposed by the special theory of relativity [38], [43].

In the final Section 5, we discuss the relationship and generalization of our theory to include
quantum mechanics, based upon previous work that has been done by the second author. As a
consequence of the explicit solutions to the two body problem, which we have found in section
4, we deduce that black holes with a well defined Schwarzschild radius cannot exist.
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1. The concept of rest-mass

We begin by defining the rest-mass m∞ of a body to be the mass of the body when it is at
an infinite distance away from all other bodies and forces in the Universe, as measured by an
observer traveling at relative rest with respect to that body. The great advantage of the STA
of Hestenes, for the most part still unappreciated by the physics community, is that each such
inertial frame is uniquely characterized by a constant Minkowski time-like unit vector u. See
[18] and [21] for details of the spactime algebra formulation of special relativity which we use
throughout this paper.

Let p∞ be the Minkowski energy-momentum vector of the rest-mass m∞. Since we have
assumed that m∞ is at rest in the frame defined by u, it follows that p∞ = m∞c2u. Now let
v = dx

dτ be the Minkowski timelike unit vector of an observer with the timelike history x = x(τ),
where τ is the natural parameter of proper time (arc length). The unit vector v = v(τ) uniquely
defines the instantaneous frame of the observer at the proper time τ .

As measured from the rest-frame u to the instantaneous relative frame v, we have

p∞v = m∞c2uv = m∞c2(u · v + u∧v) = γvm∞c2(1 +
v
c
), (1)

where γv = u · v = 1q
1−v2

c2

and v
c = u∧v

u·v . We say that Ev = p · v = γvm∞c2 is the instan-

taneous relative energy, pv = γvm∞c2 v
c is the instantaneous relative momentum, and v is the

instantaneous relative velocity of m∞ in the instantaneous frame v as measured by u. This
convention is opposite by a sign to the convention used by Hestenes in his 1974 paper. We use
the same convention here as was used by Sobczyk in [37]. There are many different languages
and offshoots of languages that have been used to formulate the ideas of special relativity. For
a discussion of these and related issues, see [3], [34], [35]. A unified language for mathematics
and physics has been proposed in [19].

Equation (1) shows that with respect to the relative frame v, the mass m∞ has the increased
relative energy Ev = γvm∞c2. This means that if we want to boost the mass m∞ from the
rest-frame u into the instantaneous frame v, we must expend the energy 4E1 = (γv − 1)m∞c2

to get the job done. Expanding the right-hand side of this last equation in a Taylor series in
|v|, we find that

∆E1 =
m∞
2

v2 +
3m∞
8c2

v4 +
5m∞
16c4

v6 + · · · . (2)

For velocities |v| << c, we see that the energy expended to boost the mass m∞ into the
instantaneous frame v moving with velocity v with respect to the rest-frame u is ∆E1=̃m∞

2 v2,
which is the classical Newtonian expression for kinetic energy of the mass m∞ moving with
velocity |v|.

If, instead, we pay for the work done by deducting the required energy-equivalent from the
mass m∞, to get the residual rest-mass m = m∞

γv
, then the terminal energy-momentum vector

of the mass m∞ when it has reached the velocity v is

p = mc2v =
m∞
γv

c2v =
p∞
γv

uv = e−
φv̂
2

1
γv

p∞e
φv̂
2 . (3)

In this equation, v̂ is a unit relative vector in the direction of the velocity v, and c tanh(φ) = |v|
is the magnitude of the velocity as measured in the rest-frame u.

Equation (3) has some easy but important consequences. We first note that m = m∞
γv

= 0
when |v| → c. This means that the energy content of each material body is exactly the energy
which would be required to accelerate the body to the speed of light c. Assuming that we have a
one hundred percent efficient photon drive, the body would reach the speed of light at precisely
the moment when its last bit of mass-equivalent is expelled as a photon. A second interesting
observation is that when we expand (m∞−m)c2 = m∞(1− 1

γv
)c2 in a Taylor series in |v| around
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|v| = 0, we obtain

∆E2 = (m∞ −m)c2 =
m∞
2

v2 +
m∞
8c2

v4 +
m∞
16c4

v6 + · · · = ∆E1

γv
. (4)

Whereas the expressions ∆E1=̃∆E2 for |v| << c, the expression for ∆E2 is much closer to the
classical kinetic energy over a much larger range of velocities |v| < c, and differs only by a factor
of 2 when |v| = c.

The basic premise upon which our theory is built is that when any particle evolves on its
timelike curve x(τ), subjected only to the elementary forces of nature and satisfying the initial
condition that p(0) = m∞c2u, then its energy-momentum vector has the form p(τ) = m(τ)c2v(τ)
for m(τ) = m∞

γv
, and satisfies the conservation law

p(τ) · u = m∞c2 = constant (5)

for all values τ ≥ 0. This law is a direct consequence of the local conservation of energy
requirement (3). We say that

m(τ) =

√
p2

c2
=

p(τ) · v(τ)
c2

=
m∞
γv

(6)

is the instantaneous rest-mass of m∞ in the instantaneous frame v(τ).
At the atomic level, our insistance upon the strict local conservation of the total energy

of each particle (5), means that whenever an elementary particle undergoes a change in its
kinetic energy, it must pay for it with a corresponding change in its instantaneous rest-mass
(6). Thus, we do not accept that the rest-mass m∞ of an isolated particle is an invariant when
that particle undergoes interactions. Insisting upon a local conservation of energy-momentum
has the singular advantage of being completely compatible with the requirements of quantum
mechanics, as has been explained elsewhere by the second author [43]. We consider that the
field of an elementary particle carries only information about the location of that elementary
particle, but does not magically transfer energy across spacetime to affect other elementary
particles. Each elementary particle pays for any change in its kinetic energy as it navigates in
space, guided by the information supplied by the four elementary forces of Nature. Consequently,
an elementary particle annihilates if and only if it reaches the speed of light.

A beautiful discussion and derivation of the basic relationships of relativistic particle dynamics
is given in [20] and [21], so we need not rederive them here. We will need, however, a number
of special formulas regarding the evolution of a particle whose the energy-momentum vector is
given by p(τ) = m(τ)c2v(τ) and satisfies (5), as given above. The Minkowski force on such a
particle as it moves along its timelike curve x(τ), is given by f(τ) = dp(τ)

dτ . It is very easy to
calculate the relative force F(τ) = 1

c2
uf(τ) as measured in the rest frame u. We find that

F(τ) =
1
c2

uf(τ) =
1
c2

dup(τ)
dτ

=
dt

dτ

d

dt
(m∞ + m∞v) = γvm∞a, (7)

where a = dv
dt is the relative acceleration experienced by the particle as measured in the rest

frame u.
Formula (7) is immediately recognized as the relativistic form of Newton’s Second Law. This

form of Newton’s Second Law applies to particles subjected only to elementary forces. Noting
that 1

γ2
v

= 1− v2

c2
, so that d

dt(γ
−2
v ) = −2v·a

c2
, it is easy to calculate the useful formulas

dγv

dt
= γ3

v

v · a
c2

(8)

and, with the help of (7),

dm(τ)
dτ

= γv
dm(τ)

dt
= −γ2

vm∞
v · a
c2

= −γv

c2
F · v, (9)
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or
dm(τ)

dt
= − 1

c2
F · v. (10)

It is well-known that the total energy-momentum vector of an isolated n-particle system is a
constant of motion in every inertial system [20, p. 634]. Assuming that the only interactions
between the particles are the elementary forces, so that (5) applies, it follows that the energy-
momentum vector of each particle has the form pi(t) = mi(t)c2vi(t), and pi(0) = m∞

i c2u, where
t is the parameter of relative time in the rest-frame u. Assuming further that there are no
collisions, this conservation law takes the form

P (t) =
n∑

i=1

pi(t) = P0 =
n∑

i=1

pi(0) (11)

for all t ≥ 0. Dotting and wedging each side of this equation on the left by u, gives the equivalent
statements that

u · P (t) =
n∑

i=1

m∞
i c2 = u · P0,

meaning that the total energy of the isolated system is constant, and that the total linear
momentum

u ∧ P (t) =
n∑

i=1

m∞
i c2vi(t) = u∧P0 = 0

of the isolated system is 0 for all values of t ≥ 0.

2. Two body system

Let us consider an isolated system of two objects mi(r), with the respective energy-momentum
vectors pi(r) = mi(r)c2vi(r), for i = 1, 2, when they are a distance r from each other as measured
in the rest-frame u. This means that the objects can only interact with each other, and that
they begin at rest in the rest-frame u when r = ∞. Thus, limr→∞ pi(r) = m∞

i c2u for i = 1, 2.
Current knowledge tells us that there are four fundamental forces in Nature acting between

the two objects:
1. The strong force operating in the nucleus of an atom. The strong force has a range of

about 10−15 meters, the diameter of a medium sized nucleus.
2. The electromagnetic force acting between charged particles. If two bodies have electric

charges q1 and q2, respectively, they will experience a Coulomb Force

F =
kq1q2

r2

as measured in the rest-frame u, and where k = 8.98× 109 N m2

C2 is Coulomb’s constant.
The Coulomb Force can be attractive or repulsive and is an inverse square relation.

3. The weak force operating within nuclear particles. The Weak Force has a range of ap-
proximately 10−18 meters which is about 1/1000 the diameter of a proton.

4. Newton’s law of gravitational attraction: The two bodies m1(r) and m2(r), in their
respective instantaneous frames v1(r) and v2(r) at a distance of r, will experience a
mutually attractive force

F =
Gm1(r)m2(r)

r2
, (12)

where G = 6.67 × 10−11N m2

kg2 is Newton’s constant. We assume that all measurements
are carried out in the rest-frame u. Just as for the Coulomb force, the gravitational force
obeys an inverse square relation.
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Note that our theory requires that both the Newton and Coulomb force laws act between
the instantaneous rest-masses, and charges, in their respective instantaneous frames defined by
unit Minkowski timelike vectors vi(r) [38], [43]. Of course, the same modification must be made
when applying the weak and strong forces, but we will not consider these forces here.

The conservation law (5) and the conservation law of total energy-momentum (11), applied
to our two particle system gives

P∞ = p∞1 + p∞2 = p1(r) + p2(r) = P (r) (13)

for all values of r ≥ 0. Equivalently,

u · P∞ = (m∞
1 + m∞

2 )c2 = u · P (r),

which is the conservation of the total energy of the system for all r ≥ 0, and

0 =
u∧P∞

c2
=

u∧P (r)
c2

= m∞
1 v1(r) + m∞

2 v2(r), (14)

which is the conservation of the total linear momentum of the system for all r ≥ 0.
The quantities

Eb
i (r) = pi(r) · (u− vi(r)) = m∞

i c2(1− 1
γi

), (15)

which are seen in (4) to be closely related to the classical kinetic energy, are called (by the first
author) Tolga’s binding energies of the respective bodies mi(r) when they are brought quasi-
statically (very slowly) to a distance r from each other in the rest-frame u. The total binding
energy Eb(r) = Eb

1(r) + Eb
2(r), is the work done by the gravitational attraction, or any of the

other known three basic forces, acting between the two bodies. With the help of formula (10),
we can easily calculate

dEb

dt
= −c2(

dm1(τ1)
dt

+
dm2(τ2)

dt
) = F1 · v1 + F2 · v2 =

dEb

dr

dr

dt
. (16)

Whereas we are only interested here in the binding energies of the two bodies due to the force
of gravity, or possibly Coulomb forces, all our considerations apply much more broadly [43].

3. Change of mass due to binding energy

Let us directly calculate the change of the rest-masses m∞
1 and m∞

2 as the two masses move
under the force of gravity or the combined actions of any of the other forces in nature. Very
simply, the instantaneous rest-masses mi(Eb

i ) are specified by

mi(Eb
i ) = m∞

i − Eb
i

c2
, (17)

where Eb
i is the instantaneous binding energy of m∞

i , as follows directly from the binding
condition (15). The total binding energy between the instantaneous rest-masses m1(Eb

1) and
m2(Eb

2) is given by Eb = Eb
1+Eb

2 . For our considerations below, we will assume that m∞
2 = sm∞

1

for a constant value of s ≥ 1, so that m∞
2 ≥ m∞

1 .
Because of the total binding energy Eb expended by the forces acting between them, as

measured in the rest-frame u, the bodies will have gained the respective velocities v1(Eb) and
v2(Eb), fueled by the respective losses to their rest-masses m∞

1 and m∞
2 . Precisely, we can say

that

m∞
i − fi

Eb

c2
=

m∞
i

γi
(18)
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where fi is the fraction of the total binding energy Eb given up by m∞
i for i = 1, 2, respectively.

This means that f1 + f2 = 1, and, by the conservation of linear momentum (14), we also know
that (m∞

1 )2v2
1 = (m∞

2 )2v2
2 or v2

2 = 1
s2 v2

1. Using this information, leads to the system of equations

m∞
1

(
1−

√
1− v2

1

c2

)
− f1

Eb

c2
= 0 and m∞

1

(
s−

√
s2 − v2

1

c2

)
− (1− f1)

Eb

c2
= 0. (19)

Solving the sytem of equations (19) for f1 and v2
1 in terms of the binding energy Eb, we find

that

f1(Eb) = 1− m∞
1 sc2

Eb
+

2m∞
1

2s(s + 1)c4 − 2Ebm∞
1 (s + 1)c2 + (Eb)2

2Eb(Eb − c2m∞
1 (s + 1))

and v2
1(E

b)

= −Eb
(
Eb − 2c2m∞

1

) (
4m∞

1
2s(s + 1)c4 − 2Ebm∞

1 (2s + 1)c2 + (Eb)2
)

4c2m∞
1

2 (Eb − c2m∞
1 (s + 1))2

. (20)

In the interesting special case when m∞
2 = sm∞

1 and s →∞, we find that the velocity

v2
1 →

Eb(2c2m∞
1 −Eb)

c2(m∞
1 )2

. (21)

We will use this result later.
Similarly, we can now obtain the instantaneous rest-masses

m1(Eb) = m∞
1 (1− f1

Eb

m∞
1 c2

)

or

m1(Eb) = m∞
1 (1 + s)− Eb

c2
− 2m∞

1
2s(s + 1)c4 − 2m∞

1 (s + 1)Ebc2 + (Eb)2

2c2(Eb − c2m∞
1 (s + 1))

(22)

and

m2(Eb) = sm∞
1 (1− (1− f1)

Eb

sm∞
1 c2

)

or

m2(Eb) =
2m∞

1
2s(s + 1)c4 − 2m∞

1 (s + 1)Ebc2 + (Eb)2

2c2(Eb − c2m∞
1 (s + 1))

. (23)

We now calculate for what critical value Eb
c of the binding energy Eb the smaller mass

m1(Eb
c) = 0. We find that

Eb
c = c2m∞

1

(
s + 1−

√
s2 − 1

)
.

For this value of the binding energy Eb, we find that

m2(Eb
c) = m∞

1

√
s2 − 1, v2

1(E
b
c) = c2, and v2

2(E
b) =

v2
1(E

b)
s2

.

We also find that f1(Eb
c) = 1

1+s−√s2−1
.

It is interesting to graph the instantaneous rest-masses mi(Eb) for i = 1, 2, the velocity
|v1(Eb)| and the fraction f1(Eb) of the binding energy being consumed by the first mass, in
terms of the total binding energy Eb being expended. In Figure 1, the velocity of light c = 1,
the mass m∞

1 = 1, m∞
2 =

√
2, and the binding energy Eb satisfies the constraints 0 ≤ Eb ≤ √

2.
At the critical value Eb =

√
2 the mass m∞

1 has entirely consumed itself. Note that up to now,
we have made no assumption regarding the nature of the force or forces which produce this
binding energy. In the next section, we will assume that the binding energy is due to an inverse
square law attractive force such as that due to Newton’s law of gravitational attraction.
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m₂(E )

m₁(E )

E 

|v₁(E )|

f₁(E )
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0.2 0.4 0.6 0.8 1.21 1.4

Figure 1. The masses m1(Eb) and m2(Eb), the velocity |v1(Eb)| and f1(Eb) are
plotted as functions of the binding energy Eb. Initially, m1(0) = 1, and m2(0) =√

2.

2

1.5

1

0.5

0.2 0.4 0.6 0.8 1.21 1.4
E b

Figure 2. This figure is the same as figure 1, except that the numerical inverse
solution r(Eb) for the distance r between the two bodies, acted upon by the
force of gravity, is shown as a function of the binding energy Eb. Note that the
value of r → 0 at exactly the moment the binding energy Eb =

√
2, and that

limEb→0 r(Eb) = ∞.

4. Binding energy due to Newton’s gravitational force

In the case that the binding energy between the two bodies is totally due to Newton’s gravi-
tational attraction (12), we can write down the differential equation for the total binding energy
Eb(r) as a function of the distance r between the two bodies as measured in the rest-frame u.
We get

dEb

dr
= −Gm1(Eb(r))m2(Eb(r))

r2
(24)

where m1(Eb(r)) and m2(Eb(r)) are given in (22) and (23), respectively. Making these substi-
tutions, we arrive at the rather complicated Riccati-like differential equation

4G(m∞
1 )4s(s + 1)2(2s + 1)c8 − 4G(m∞

1 )3(s + 1)
(
5s2 + 6s + 1

)
Eb(r)c6

+2G(m∞
1 )2

(
11s2 + 18s + 7

)
(Eb(r))2c4

−12G(m∞
1 )(s + 1)(Eb(r))3c2 + 3G(Eb(r))4

+
(
−4(m∞

1 )2r2(s + 1)2c8 + 8(m∞
1 )r2(s + 1)Eb(r)c6 − 4r2(Eb(r))2c4

)
Eb′(r)

= 0.

We shall consider the solutions of various special cases of this differential equation.
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r
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Figure 3. The mass m1(r), the binding energy Eb(r), and the velocity |v1| are
shown for 0 ≤ r ≤ 60000. This is the case of binding to a celestial body. To
make this figure, we have assumed that m∞

2 = 10000m∞
1 where m∞

1 = 1.

4.1. Two body problem. We first consider a numerical solution in the case that m∞
1 = 1,

m2 = s =
√

2, and the constants G = c = 1. For this case, the graph of the solution is given in
Figure 2. Note that we are actually plotting the inverse function r(Eb) of the solution. This is
permissible because, as can be seen in the figure, r(Eb) is a strictly decreasing function in the
physical range of interest for 0 < Eb ≤ √

2. Note also that r(
√

2) = 0, although the accuracy of
the numerical solution does not clearly show this.

In the case that the body m∞
2 is so massive that m2(r) = m∞

2 for all values of r ≥ 0, the
differential equation (24) becomes

dEb

dr
= −m∞

2

Gm1(r)
r2

, (25)

which, together with the boundary condition that Eb(∞) = 0, gives the particularly surprising
solution

Eb(r) = Eb
1(r) = c2(1− e−

Gm∞2
c2r )m∞

1 ,

or solving (17) for m1(r),

m1(r) = e−
Gm∞2

c2r m∞
1 .

Using (21) and the expression for Eb(r) above, we find the velocity

|v1(r)| = c
(
1− e

−Gm∞2
c2r

)
.

See Figure 3. The differential equation (25) and its solution, were first derived in [43], and a
discussion of how it is related to the total energy found by Einstein can be found therein.

Another interesting two body case is when the masses m∞
1 = m∞

2 . In this case the differential
equation for the binding energy becomes

dEb(r)
dr

= 2
dEb

1

dr
= −Gm2

1(r)
r2

= −G(m∞
1 − Eb

1(r)
c2

)2

r2
, (26)

which has the simple solution

Eb(r) =
2c2G(m∞

1 )2

Gm∞
1 + 2c2r

.

We also easily find

m1(r) = m∞
1 − Eb

1(r)
c2

=
2c2m∞

1 r

Gm∞
1 + 2c2r

,
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Figure 4. The mass m1(r) = m2(r), the binding energy Eb
1(r), and the velocity

|v1(r)| are shown for 0 ≤ r ≤ 3.

and using (20), the velocity

|v1(r)| = c

√
Gm∞

1 (Gm∞
1 + 4c2r)

Gm∞
1 + 2c2r

.

See Figure 4. The terminal velocities of the equal bodies m1(r) and m2(r), when they self-
annihilate, are equal to the speed of light c.

4.2. Three body problem. As might be expected, the general three body problem is harder
than the two body problem. However, we can solve the three body problem in the special case
that m∞

1 = m∞
2 and the third body m∞

3 lies on a line between m∞
1 and m∞

2 . We can immediately
write down the rigorous differential equation for the binding energy Eb for this system. We find
that

dEb(r)
dr

= −2
Gm∞

3 m∞
1

r2

(
1− Eb(r)

2m∞
1 c2

)
− G(m∞

1 )2

4r2

(
1− Eb(r)

2m∞
1 c2

)2
, (27)

which has the closed form solution

Eb(r) =
2 c2

(
1− e

Gm∞3
c2r

)
m∞

1 (m∞
1 + 8m∞

3 )

m∞
1 − e

Gm∞3
c2r (m∞

1 + 8m∞
3 )

. (28)

Note that in writing down this differential equation, we have used the fact that when the masses
m1(r) and m2(r) are at a distance of r from the mass m∞

3 in the center, we have the relationship
that

m1(r) = m∞
1

(
1− Eb(r)

2m∞
1 c2

)
= m2(r).

From (28) and this last relationship, it follows that

m1(r) =
8m∞

1 m∞
3

−m∞
1 + e

Gm∞3
c2r (m∞

1 + 8m∞
3 )

.

The graph given in Figure 5 plots the mass of m1(r) on the y-axis for values of r on the x-axis
for r ≥ 0. We have taken m∞

1 = 1 = m∞
2 , m∞

3 = 3, c = 1, G = 1 to produce this graph. The
critical value when m1(r) = 0 occurs when r = 0.

It is not surprising that Figure 3 and Figure 5 are very similar. Indeed, for m∞
3 >> m∞

1 = m∞
2 ,

the formulas for the masses m1(r) become the same. Both Figure 3 and Figure 5 strongly suggest
that black holes do not exist. Whenever a less massive object approaches a very massive object,
depending upon initial conditions, it will necessarily self-annihilate or coalesce. There cannot
be any critical mass which would define the Schwarzschild radius of a black hole.
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Figure 5. The two masses m1(r) and the binding energy Eb(r) are shown for
0 ≤ r ≤ 10. Both masses m∞

1 = m∞
2 = 1 self annihilate as they approach the

mass m∞
2 = 3 at r = 0.

5. Discussion

A major problem of general relativity is that it does not easily lend itself to quantization,
although Einstein, himself, apparently did not believe in quantum mechanics [12]. We have seen
that, theoretically, when a mass falls from infinity into a larger mass it will self-annihilate at
r = 0. However, quantum mechanics implies that the object’s dimensions effectively become
that of space itself at r = 0. The restrictions of quantum mechanics imply, therefore, that r can
never reach the value r = 0 for macroscopic objects. In the case of elementary particles, where
additional forces other than gravity are known to be at work, self-annihiliation does occur. We
have already seen that in our approach singularities, even those arising from the inverse square
dependency of Newton’s Law, disappear.

Indeed, taking into account how unit lengths quantum mechanically stretch in a gravitational
field, the second author obtained the precession of the perihelion of Mercury as well as the
deflection of light passing near a celestial body [43]. Typically, these have been considered to be
the best proofs of the validity of Einstein’s general theory of relativity. In addition, our approach
nicely lends itself to the quantization of gravitation [42], and of any other field that the object in
question can interact with, since, as we have seen in Section 3, the concept of binding energy is
in no way restricted to gravitational forces [39], [40], [41]. In fact, it yields in a straightforward
way the de Broglie relationship [45].

A consequence of our theory is that black holes of macroscopic objects solely due to the force
of gravity do not exist. Rather, when a sufficient amount of mass coalesces in space, the object
becomes either invisible or nearly invisible due to the extreme red-shift near such a body. We
thus predict that very dark objects, but no black holes, should be found in the center of many
galaxies. On the other hand, if a sufficient amount of mass coalesces causing a total collapse
to values of r so small that other elementary forces become predominant, then it becomes
plausible that there will be a partial or even a total annihiliation of the macroscopic body with
a corresponding large burst of energy. This may explain the presence of the recently discovered
“biggest expanse of nothing”, a billion light years wide, which is the space that would normally
be occupied by thousands of galaxies. “No stars, no galaxies, no anything” [30].

Although our theory produces results that are practically the same as those of the General
Theory of Relativity, they are only the same up to a third order Taylor expansion. Ultimately,
the value of any theory rests not upon the conviction or authority of its authors, but on the
fruits of its predictions and its ability to encompass and explain experimental results.
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