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ABSTRACT 

 
 

In Part I of this work, we derived a general equation of motion, based only on the special theory of relativity and 

energy conservation. This equation, turned out to be that of Newton, in the case the motion is driven by a weak 

gravitational field, with a velocity small as compared to the velocity of light. Thus in Part I we found 
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(written by the author, in the local frame of reference)    

 

here 
0r  is the distance of the object to the center of celestial object of mass 

0M , 
0v  its velocity, as referred to the 

local observer; G is the universal constant of gravitation, and 
0

c  the velocity of light in empty space.   

 

The above equation is written for the local observer; we should as well be able to write it, as seen by the distant 

observer. Thus, as we have discussed, the rest mass of an object in a gravitational field (in fact in any field the 

object in hand enters into interaction), is decreased as much as its binding energy in the field; a mass deficiency 

conversely, via quantum mechanics, yields the widening of the period of time rhe object displays, the stretching 

of its size, as well as the weakening of its internal energy. Henceforth we are not in the need of the “principle of 

equivalence” assumed by the general theory of relativity, in order to predict the occurrences dealt with this 

theory.  

 

Our approach then, as viewed by the distant observer, yields 
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here r is the distance of the object to the center of celestial object of mass 
0M , and v its velocity, as referred to 

the distant observer. 

 

The frame drawn by the above equation allows us to derive the essential findings of the general theory of 

relativity, i.e. the bending of light through its passage nearby a celestial body, and the precession of the 

perihelion of the planets. Thus light is deflected exactly twice of what is classically predicted, whereas we 

predict for Mercury, a precession of the perihelion about 1.3% less than what Einstein predicted; the difference 

in question is experimentally indiscernible in the case of Mercury, but it should become more important, in the 

case of a celestial body moving in a stronger field, also on an orbit with higher eccentricity than that of Mercury. 

 

Following our approach we further undertake the behavior of an object thrown with a very high speed from a 

celestial body; thus the speed decreases exponentially to reach an asymptotic value. 
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1. INTRODUCTION 

 

In the first part of this work we derived a general equation of motion, based only on the 

special theory of relativity and energy conservation. This equation, turned out to be that of 

Newton, in the case the motion is driven by a weak gravitational field, with a velocity small as 

compared to the velocity of light.  

 

Thus we found 
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or, by differenciation, 
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  (written by the author, in the local frame of reference)    

 

here 0r  is the distance of the object to the center of celestial object of mass 0M , 0v  its 

velocity, as referred to the local observer; G is the universal constant of gravitation, and 0c  

the velocity of light in empty space.   

 

Recall that Eqs. (1-a) and (1-b) is written for the local observer. We should be able to write it, 

as assessed by the distant observer; indeed our metric, is (just like the one used by the general 

theory of relativity) altered by the gravitational field (in fact, by any field the “measurement 

unit” in hand, interacts with); yet in our approach, this occurs via quantum mechanics.  

 

This is detailed in Part I (cf. Theorems 1 and 2); thus, as we have discussed, the rest mass of 

an object in a gravitational field, is decreased as much as its binding energy in the field; a 

mass deficiency conversely, via quantum mechanics, yields a stretching of its size, as well as 

the weakening of its internal energy. 

 

Henceforth we do not need the “principle of equivalence” assumed by the general theory of 

relativity, in order to predict the occurrences dealt with this theory.
1
 We predict them through 

our “general equation of motion”, essentially based on the special theory of relativity. 

 

Thus below, we shall first elaborate on Eq.(1-a), to see how a motion described by this 

equation, is pictured by a distant observer (Section 2). Next, we check this equation against 

the major predictions of the general theory of relativity, i.e. basically the precession of the 

perihelion of a planet, and the deflection of light nearby a star (Sections 3-5). Then, we 

undertake the behavior of an object thrown with a very high speed from a celestial body 

(Section 6), followed by a conclusion (Section 7).   
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2.  ELABORATION OF THE GENERAL EQUATION OF  

     GRAVITATIONAL MOTION 

 

In order to be able to carry a comparison of Eq.(1-b), with the classical Newtonian equation 

(written out of this equation in the case where 00 c/v , or 0  is negligible as compared to 

unity), we will now elaborate on 0v , and accordingly on 00 dr/dv . 

 

To ease the phrasing of our analysis, let us (without any loss of generality), go back to our 

specific problem, i.e. the motion of Mercury around the sun. 

 

Classically, 0r  is the distance of the planet to the sun at the location in question, no matter 

whether it is assessed by the distant observer or by the local observer (affected by the 

gravitational field). According to the present approach, 0r  is still the distance of the planet to 

the sun at the given location; yet this distance appears to be different when assessed by the 

distant observer; it is not 0r  but r, a greater quantity than 0r , as shall be detailed soon.   

 

Likewise classically, )r(v 00  is the velocity of Mercury on the orbit, regardless whether it is 

measured by the distant observer, or the local observer, affected by the gravitational field. 

According to our approach (as we will precise below), )r(v 00  is still the velocity of the planet 

as measured by the local observer (affected by the gravitational field); yet the velocity of the 

planet according to the distant observer is not the same; we shall call it )r(v 0 , a smaller 

quantity than )r(v 00 . 

 

To clarify how we should relate v(r) and )r(v 00 , we would like to recall a previous 

discussion
2
 we carried about the “slowing down of the velocity of light in the vicinity of a 

celestial body” (Appendix B of the cited reference), as implied by Theorem 2 of Part I.  

 

Our approach goes as follows (cf. Figure 1). 

 

According to our Theorem 2, a stick meter of length R0 in empty space (contrary to what the 

general theory of relativity predicts), stretches, nearby a celestial body, to become R . Thus, 

following Theorem 1, and just like Eq.(11) of Part I, we can write
*
 

 
)r(

0
00e


 RR .                                (2) 

 

where , )r( 00 or in short 0  is 2

000 cr/GM  [cf. Eq.(10) of Part I]. 

 

                                                 
*
  Note that the general theory of relativity, instead, predicts 

    )1(21 0000  RRR ,            (i) 

    the approximation, being valid for a weak gravitational field. To our knowledge, this is however, not checked 

against any experimental result. 
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So, as light travels, from -  to +  , passing nearby the celestial body, it crosses a “unit 

path” R(r) (picked around the location r), instead of R0(r), the original length, it would 

otherwise cross (were there, no gravitational field around). Thus, light in the presence of the 

gravitational field, as viewed by a distant observer, always traveling with the usual constant 

speed 0c , would yet spend a longer time, through the itinerary in question. This makes that, in 

the presence of the celestial body, as viewed by the distant observer, were he unaware of the 

streching of space, light slows down as much.  

 

In other wors, the “streching of space” and the “slowing down of light”, in the presence of a 

gravitational field, are equivalent occurences.  

 

The local observer though, is not capable to detect any difference, since unit lengths and unit 

periods (based on our Theorems 1 and 2, stated in Part I) dilate equally.  

 

Henceforth, in our approach, the slowing down process of light nearby a celestial body, 

resembles to that seemingly drawn by light, within the frame of the special theory of relativity, 

for example traveling in between two mirrors, in a light clock of length 
0L , brought to a 

uniform translational motion of velocity wtr, in (for simplicity) say, a direction perpendicular 

to the travel direction of light, in the clock, as viewed by the fixed outside observer; thus in 

this example, 
0L  is not altered due to the motion. Let then 

0T  be the back and forth travel 

period of time of light in the light clock, at rest. 
0T , due to the motion, as assessed by the 

outside fixed observer, becomes 
0TT  , where as usual 2

0

2

tr /cw1/1  . Obviously 0c  is an 

invariant; nonetheless we can define a velocity c as T/L2 0
, i.e. /c0

, which makes that the 

stretching of the itinerary of light, and the resulting time dilation due to the translational 

motion in consideration, can be considered for a light slowing down, if one wanted to keep the 

distance crossed by light, unaltered.  (The direction of the translational motion of the light 

clock, does not affect this result.) 

 

Just likewise, because (based on our Theorems 1 and 2, stated in Part I), unit lengths loosen 

nearby a celestial body; according to a distant observer, light grazing a celestial body, crosses 

a longer distance compared to what it would do, if there were no gravitation. This becomes 

clearer if we consider a light clock in a gravitational field; because the box in which light goes 

back and forth, shall stretch in the gravitational field; according to the distant observer, the 

ticks of the light clock in hand, shall appear weakened, as if light (in the box) has slowed 

down as much.
†
  

 

                                                 
†
  It should be emphasized that, the internal motion, say of atomistic or molecular objects is drawn by only the 

electric charges. This is to say, it does not depend on the change of the mass of the object, if this somehow, 

ever happened. The Bohr Atom Model, may help to picture this fact, without any loss of generality. The 

revolution speed v of the electron around the proton is (in CGS unit systen) given by nh/e2v 2 , where e is 

the charge intensity of either the electron or the proton, h the Planck Constant, and n the principal quantum 

number. Thus, this speed does not depend on the mass of the electron, nor obviously on any perturbation this 

may undergo. It is interesting to note that for instance in the case the electron is replaced by the muon, bearing 

the same charge, but a mass about 207 times greater than that of the electron, the revolution speed of it around 

the nucleus, shall still remain the same, though the muon shall be bound to the proton at a distance as much 

closer. Note further that the two ingredients of Bohr Atom Model, i.e. r/mvr/e 222   and  

nhmvr2  (where r is the radius of the electron’s orbit and m the electron mass) , are well compatible with 

the special theory of relativity (the present theory’s essential basis), i.e. relationships one shall derive out of 

these two equations, about the two unknowns v and r, remain Lorentz invariant. 
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We would like to stress that in our approach, the value of 0c , the speed of light in empty 

space, as measured by the distant observer, on the contrary to the actual wisdom,
1
 developed 

within the frame of the general theory of relativity, is not altered.  

 

Though, because of the stretching of the itinerary in question, according to the distant 

observer, light shall be viewed as if, it slows down, in the presence of a gravitational field. 

 

Let than c(r), the velocity of light at r, in the gravitational field, as viewed by the distant 

observer. According to the foregoing reasoning [essentially based on Eq.(2)], c(r) is given by 

 
)r(

0
00ec)r(c


 .                  (3) 

 

At this stage let us go back to our light clock, in which we had considered light traveling in 

between two mirrors, brought to a uniform translational motion of velocity wtr, as viewed by 

a fixed outside observer.  

 

If in fact, this were not a light clock, but any clock, say a box at rest, in which an “ordinary 

clock particle”, which we may call “clock pendulum”, moves back and forth with the 

velocity inside0u ; the clock, based on the “principle of relativity”, would still retard as much as 

2

0

2

tr /cw1/1  , when brought to a uniform translational motion (of velocity wtr), through 

which inside0u  becomes insideu , as assessed by the fixed outside observer. 

 

Thus the velocity uinside of the “clock pendulum” motion, in the moving frame, as assessed by 

the fixed outside observer shall be given by 

 


 inside0

inside

u
u  .                   (4) 

 

Likewise, if now we consider the “box” in question (bearing an “ordinary clock particle” 

going back and forth), in a gravitational field, because the box shall (due to the gravitation) 

stretch, the ticks of the clock in hand, shall according to the distant observer, appear 

weakened, as if the particle inside the box has slowed down as much. 

 

Accordingly our Eq.(3) in a gravitational field, shall not be written for only the speed of light, 

but can well be generalized [just like what we did at the level of Eq.(3)] for any velocity, the 

clock pendulum would display.  

 

Let us especially consider again, the motion of Mercury around the sun, and precise the 

following definitions. 

 

0r  or )t(r 00   :  the distance of the planet to the sun, at time 0t , as assessed by the   

local observer 

 

r or r(t)  : the distance of the planet to the sun, as assessed by the distant 

observer, at time t (still measured in the same frame)  

 

)r(v 00 , or in short 0v   :  the velocity of Mercury, at the location 0r  on the orbit, as assessed 

by the local observer 
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v(r), or in short v    :  the velocity of Mercury, at the location r on the orbit, as assessed by 

the distant observer 

 

Note that just like the local observer measures the speed of light as 0c  (the very  speed of light 

in empty space); similarly, 0v  measured by the local observer, is the velocity, the distant 

observer would measure if there were no gravitation. 

 

Thence, based on the foregoing discussion, and particularly Eq.(3), we have    

 
)(rα

00
00e)(rvv(r)


 .          (5) 

 

Recall that, the velocity appearing in Eq.(1) [the same, in Eq.(13) of Part I], is well )r(v0 ; i.e. 

following the above equation, one can write 

 

)r(v0 = v(r) 0α
e .           (6) 

 

We can now transform Eq.(1) to predict, what the distant observer shall assess. 

 

Thus, following Eq.(2), we have 

 

         00 e)r(d)r(ve)r(dv)r(dv 0000


  .       (7)  

 

On the other hand one can, following the definition of 0 [cf. Eq.(10) of Part I], write   

 

         
2

0

2

0

0

0

0

rc

G

dr

d M



;                      (8) 

 

Note that here 0dr  is the infinitely small distance (around 0r ), as measured by the local 

observer, and dr is the same element as measured by the distant observer. Yet the distant 

observer measures the quantity ,dr0  as .dr  

 

According to Eq.(2), the relationship between these two differential elements, becomes  

 

   
)r(

0
00edrdr


  .         (9) 

 

Eqs. (5) - (8) enable us to transform Eq.(1), the general equation of gravitational motion, 

written for the local observer, i.e. 

 

02

0

0

2

0

2

0

0 dv
c

v

c

v
1d 













   .        (10) 
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Eq.(9), on the other hand; regarding the distance of Mercury to the sun’s center, as assessed 

by the distant observer, yields 

 

      
 0

0

'
0

'
0

'
0
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00'
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r

R
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0

)r('

0

'

0

)r(
R

0

'

0

r

0

)r('

0 derdererr  ,               (11) 

 

where 0R  is the sun’s proper radius, and '

0  is a simplified representation for )r( '

0

'

0 .  

 

One can show that for the case of Mercury, the above equation reduces to
‡
  

    0err 0


 .        (12) 

 

Accordingly, Eq.(10) becomes 
 

                           
dr

dv
ve

c

v
21e

r

G
00 2

2

0

2

2
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











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                          (equation of motion written by the author for Mercury, 

                           in fact for any object, as assessed by the distant observer)    

     

Note that this equation reduces well to the classical Newtonian equation, if v can be neglected  

as compared to the velocity of light in empty space, and if 0  is small. 

 

Eq.(13) on the other hand [via Eq.(9)], fortunately reduces to the differential form of Eq.(3) 

[which is the basic ingredient in transforming our original equation, i.e. Eq.(1-b) (written for 

the local observer), into Eq.(13), written for the distant observer], when 0v  is set to 0c , and v 

is set to c, confirming the internal rigor of our approach.  

 

                                                 
‡
   We can show that within the sun  )r( '

0

'

0 , or in short 
'

0 , becomes
2 

 2

0

2

03

0

2

0

0
0

'

0

'

0

'

0 'rR
Rc2

G
)R()r( 

M .            (i) 

    Thus the first integral at the RHS of Eq.(11), is in the order of 
0R , the radius of the sun, and is anyway 

negligible as compared to 0r , the radius of the orbit of Mercury. The second integral at the RHS of Eq.(11) 

can, along Eq.(9), be written as 

    
0

0

0

0

'
0

'
0

r

R

'

0

'

02

0

0
r

R

'

0

)r('

0 )r(ln
c

G
der 

 M
;          (ii) 

    the outcome (though a positive contribution), is in the order of )r(r 000  (written at the location of Mercury), 

and the effect of this quantity next to 0r is practically none. Therefore the result of Eq.(11) is well, Eq.(12) 

(c.q.f.d.). 
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Following Eqs. (18) and (19) of Part I (i.e. the assumptions of small 0  and circular orbit), 

the above equation, reduces to 

 

                                       
dr

dv
ve

c

v
31

r

G
02

2

0

2

2
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











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M
  ,                         (14) 

                             (approximate equation of motion written by the author for Mercury  

                              as assessed by the distant observer) 

 

which (though not exactly the same) appears, for the case of Mercury, in a desirable 

congeniality with the equation of motion predicted by the general theory of relativity.
1, 3 

 

A more detailed study and a numerical application about the subject shall be presented below. 

 

Note that Eq.(13) yields 

    
2

c
vif,0

dr

dv 0

0   ,       (15) 

and 

    
2

c
vif,0

dr

dv 0

0   .       (16) 

 

Eq.(15) points to the usual occurrence; indeed, as an object moves toward a gravitational 

source, its speed, through the interaction, as assessed by the distant observer, shall increase. 

(Note that here, dv  and dr display opposite signs.)  

 

Eq.(16) though unusual, discloses the fact that, if the object of concern, approaches a 

gravitational source with a speed greater than 2/c0 , then its velocity, through the 

interaction, still as assessed by the distant observer, shall decrease. An object passing by, with 

a speed just equal to 2/c0  as assessed by the distant observer, shall keep on going with the 

same speed, no matter how intense is the gravitational field (though of course there will still 

be bending, toward the gravitational source). 

 

3. HOW IS THE PATH DRAWN? 

 

In our approach, the bending of the trajectory of an object (in motion, in a direction different 

than that of the gravitational force), nearby a celestial body, as assessed by the distant 

observer, is clearly due to two distinct processes. 

 

The first one, according to our postulate about energy conservation (stated in Part I of this 

work), is due to the variation of the rest mass of the object in consideration (though at an 

infinitesimal rate, in most cases we observe). Thus, while the object piles up, as additional 

rest mass, some of its kinetic energy through a slowing down course, or looses some of its rest 

mass, increasing its kinetic energy in a run away course, it should, due to the conservation of 

the linear momentum, receive kicks, which in fact, must be the cause of the acceleration 

(either the slowing down or the run away courses), in question.     
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This tacit process is in fact, the same as that of the Classical Newton’s pull, since this was a 

main ingredient to our approach, except that we considered the “energy conservation” (not in 

the classical, but) in the broader sense. 

 

The second process responsible of the bending in question (still, as assessed by the distant 

observer), is so to say the quantum mechanical alteration of its speed by the gravitational 

field; its local velocity, whatever it is, appears slower to the distant observer [cf. Eq.(3), or in 

general Eq.(5)]. In fact, this process alone, though through a different philosophy is 

considered by the general theory of relativity (where moreover, as shall be elaborated below, 

the “strength” of the slowing down of light, for instance, in a gravitational field is, twice as 

that we predict, and this, were the field weak). The resulting bending then, is calculated via 

the application of the Fermat Principle.
1, 2 

 

The two processes as we disclose, are linked to each other, as much as conservation of energy 

and quantum mechanics are. 

 

Below we are going to consider two well known cases, i.e. the deflection of light nearby the 

sun, and the precession of the orbit of Mercury. 

 

Based on the foregoing discussion we can handle these two cases, by seeking a solution of 

Eq.(14) in relation to the classical Newton Equation, i.e.  

 

                                 
dt

vd

r

r

r

G
2

0 
M

  ,                                                                        (17) 

 

or in scalar form, 

 

      
dr

dv
v

r

G
2

0 
M

  .                            (18) 

 

The extra bending extra  implied by our approach as compared to the classical Newtonian 

bending, can then be easily determined along Fermat principle, through the following 

difference 

 

 
path Newtonpath Authorpath extra

extra
v

dv
ancot

v

dv
ancot

v

dv
ancot ;   (19) 

   

here   is the angle the path makes with the gravitational field line.                    

 

4.  DEFLECTION OF LIGHT NEARBY THE SUN, THROUGH THE  

     PRESENT APPROACH  

 

Based on Eq.(19), we first undertake the problem of light (cf. Figure 1) through its passage 

nearby the sun, without any loss of generality.  

 

Note that classically the speed of light 0c , is not altered nearby a gravitational field, i.e. 

classically c/dc  is zero. 
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Thus, via Eqs. (3) and (19), we obtain 

 

   ''875.0
c

G
2

)zR(

dzR

c

G

z

R
)z(d

cos

sin

)z(c

)z(dc
2

0

0

2/322

0

0

2

0

00

0extra 






 













MM
.  (20) 

 

Therefore extra  turns out to be as much as the classical bending; this makes that according to 

our approach light, through its passage nearby the sun is deflected twice as much as the 

deflection predicted by the Newtonian approach, i.e. 1.75’’ altogether (c.q.f.d.).  

 

* 

Recall that the general theory of relativity considers a contraction of lengths, instead of a 

stretching (contrary to what we proposed herein), and a conjoint dilation of time, in a 

gravitational field; accordingly, for the case of the light deflection nearby the sun, Einstein 

(though we still object, as discussed right below), wrote
1
          

              

   )z(21c
)z(1

)z(1
c)z(c 000

00

00

0 



                    (21)                                                                                 

                                  (written by Einstein for the light slowing down, nearby the sun), 

versus  

    )z(1cec)z(c 000

)z(

0
00 


.      (22) 

                        (written by the author for the light slowing down, nearby the sun)    

 

Thus following Einstein, the resulting deflection angle   becomes     

 

  
02/322

0

0

2

0

00

0

0 4
)zR(

dzR

c

G2

z

R
)z(d2

z

R

)z(c

)z(dc



 













M
 .             (23) 

     (written by Einstein) 

 

Note that even if the structure of Eq.(21) is considered to be consistent with the idea of 

contraction of lengths, next to the time dilation; this equation still seems to be erroneous, and 

this, already based on the general theory of relativity. Indeed, as mentioned above, according 

to this theory, a stick of length 0R  in the gravitational field of the sun, becomes  )z(1 000 R , 

only so long as it is held parallel to the radius of the sun; a stick that is perpendicular to the 

radius, behaves normally, as observed by the distant observer.
1, 3 

This makes that, a stick of 

length 
0R  placed at the location z, along the path of light nearby the sun (cf. Figure 1), is in 

fact (according to the general theory of relativity), shortened by less than a factor of 

 )z(1 00 ; this factor, more precisely is   )r/z()z(1 0000 ; thence Eq.(21) is clearly 

inconsistent with the frame of the general theory of relativity. The result, were the necessary 

correction is taken into account, surprisingly comes out to be half of what the general theory 

of relativity claimed, thus in fact, the classical result (still via the general theory of relativity). 
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Our approach furthermore, regarding the light deflection problem is consistent with the results 

Pond and Rebka measured, in regards to light frequency change in a gravitational field
4
 (since 

this occurrence is essentially due to the energy conservation thus the increase of the energy of 

the falliing photon in the gravitational field, and “energy conservation” is the main 

ingredient to our approach).  The general theory of relativity does not predict any such 

change. 

 

5. A DETAILED STUDY ABOUT THE PRECESSION OF THE PERIHELION OF 

MERCURY 

 

Here we shall apply Eq.(19) to predict how much Mercury (according to our approach), is 

deflected from the Newtonian  trajectory, as observed by a distant observer. 

 

Thus, according to our approach, the relative differential change in the speed of the planet, 

becomes   

                                















de

c

v
21e

v

c

v

dv
00 2

2

0

2

2

2

0

Author

,      (24) 

 

versus the corresponding, classical Newton formulation, i.e. 

 

                                       d
v

c

v

dv
2

2

0

Newton

.        (25) 

 

 

The precession P  of the perihelion of Mercury, through each revolution is then  

 

 
NewtonAuthor

P
v

dv
ancot

v

dv
ancot ;    (26) 

 

here   is again, the angle the path makes with the gravitational field line.                    

 

Thus based on Eqs. (24), (25), the Taylor expansion of the exponential term in the case of 

weak gravitation, and our original equation of motion, Eq.(13) of Part I, as well as the 

equations derived from this, i.e. Eqs. (18) and (20) (of Part I), in the case of still weak 

gravitation, also a slow cruise velocity, Pd  becomes      

   





















 d

a

r
d2ancotd

c

v
2ancot

v

c
d

2

0

2

02

2

0

P ;    (27) 

here a is the semi-major axis of the classical orbit; right below, we shall further call b, the 

corresponding semi-minor axis. 

 

Thence, the divergence P  between the actual orbit and the classical (closed) elliptic orbit, 

through each revolution of the planet around the sun, is given by  

   dancot
a

r
dancot2

orbit orbit
P  .      (28) 
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The two integrals appearing in here, can be calculated to yield
§
 

 














orbit 2

0

2

0

1P
cb

aG
22dancot2

M
 ,      (29) 

2

0

0

orbit
2P

ac

G
2dancot

a

r M
   .      (30) 

This makes that  

        









a

1

b

a2

c

G
2

22

0

0

P

M
 .        (31) 

              (the rotation angle of the major axis of Mercury’s orbit,  

                                    through each revolution, derived by the author)  

 

The general theory of relativity, instead, predicts
1 

         
2

0

2

0

cb

aG
6

M
  ,         (32) 

           (the rotation angle of the major axis of Mercury’s orbit,  

                                  through each revolution, derived by Einstein)  

 

which happens to be just a little more than that predicted by the theory presented herein.  

 

The difference of around 1.3% in between the two predictions appears to be experimentally 

indiscernible, in the case of Mercury, given that the uncertainties embodied by the latest radar 

measurements amount well to a couple of percent.
5
 The difference in quesiton should though 

become more important, in a stronger gravitational field, together with a greater eccentricity. 

 

6.  BEHAVIOR OF AN OBJECT THROWN WITH A VERY HIGH SPEED  

      FROM A CELESTIAL BODY 

 

Within the frame of our approach, it is interesting to analyze how, an object thrown with a 

very high speed, from a celestial body, behaves. (Recall that our approach anyway reduces to 

the classical Newtonian approach, when the speed of the object of concern is negligible as 

compared to that of light.)  

 

Thus let initial0v   the launch speed (measured by the local observer), of an object thrown say, 

vertically, from a celestial body of mass  0M , and radius 0R . Its speed shall be )r(v 00  (or in 

                                                 
§
  Special thanks are due to Professor Elman Hasanov, from Işık Univesity, who kindly achieved the integrals in 

question. 
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short, )v0  at the elevation 0r . In such a case (presuming that 0M  holds as the mass of the 

gravitational source, throughout), Eq.(13), of Part I, shall be rearranged to be read as 
 

2

0

0

2

0

)r(

2

0

2

initial0

)R(

c

)r(v
1

e

c

v
1

e 0000









.        (33) 

Let further 

 1
c

v
cv

0

0

00 ,        (34) 

where   is a very small number. 

 

Thus )r(v 00  becomes 

 )r()R(

2

0

2

0 0000e21
c

v 
  .        (35) 

The initial value of the LHS of this relationship is )21(  ; it rapidly reduces to the value of 

 )R(2 00e21


 . 

 

Henceforth, an object thrown from a celestial body with a speed close to that of light, 

decelerates exponentially, acquiring rapidly a constant speed.  

 

Consider such a process. The time taken for this, is the time for the object to come from 
0R  to 

0r , located “far enough”. The quantity )r( 00 , following Eq.(10) of Part I, is inversely 

proportional to 0r ; therefore say, 

 

    
0

6

0 R10r  ,             (36) 

 

can be considered as a sufficiently long range, through which the ultimate escape velocity is 

reached, since at the exponential argument of the RHS of Eq.(33), )r( 00  then would become 

)R(10 00

6 [and thus can be neglected as compared to )R( 00 ].  

 

6. CONCLUSION 

 

Herein we presented a complete theory covering a whole range between the subatomic world, 

and the world of the motion of stars. We were able to obtain the results predicted by the 

general theory of relativity, via the special theory of relativity, and quantum mechanics, only. 

Note that the exponent “two”, appearing in the spatial dependency of the expression of the 

gravitational force [thus, proportional to the inverse of (the distance between two static 

masses)
2
], can be obtained as a requirement imposed by the special theory of relativity.

2,6
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Therefore we did not need the principle of equivalence, the main ingredient of the general 

theory of relativity, next to the special theory of relativity.
1
 This opens, a much wider horizon, 

than that covered by the general theory of relativity. Thus the gravitational field is not an 

exception in regards to say, the retardation of clocks (though, it still remains to be the only 

field interacting with all known objects). An ionized clock interacting with an electric field, 

too will retard, just in the same way a clock interacting with a gravitational field retards.
2, 6 

  

Henceforth, herein, we came out with a general equation of motion, governed by a celestial 

body (as viewed by the local observer): 

   

   
0

0

02

0

2

0

2

0

0

dr

dv
v

c

v
1

r

G
















M
 .       (1)                           

    (written by the author, along 0r and 0v to be measured by the local observer)      

 

 

 

 

This equation, as viewed by the distant observer, becomes 

 

              
dr

dv
ve

c

v
21e

r

G
00 2

2

0

2

2

0 














M
 ;                    (13) 

                (written by the author, along r and v measured by the distant observer) 

 

this turned out to be the equation responsible of the precession of the perihelion of Mercury, 

and any such object. 

 

Our derivation remains as well valid for any mass in motion; thus it should also hold, for a 

light  photon, if this ever involved a mass kernel.   

 

This indeed turned out to be the case, since the prediction about the deflection of light, nearby 

the sun, based on the adoption of such a kernel (in fact as imposed by our approach, if we 

were not to endorse any exception, even if this were a photon), matches well with the 

observed value. 

 

Thence, one major conclusion we come out with, is that the light photon bears (though 

infinitesimal), a “mass kernel”, a prediction against to the frame of the general theory of 

relativity.  

 

The way we arrived to our predictions, may further provide a clue to how the gravitational 

force is developed. 

 

Whether this is a light photon, Mercury, or a stone, say in a free fall; we have (assuming that 

the counterpart mass of the gravitational force is very big, so that its position is practically 

not influenced by the gravitational interaction in question), indeed elucidated the fact that, as 

the (small) object accelerates in the gravitational field, a minimal part of its mass, or the same, 
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“internal energy”, is transformed into kinetic energy; as the object decelerates, it piles up 

“kinetic energy” as additional mass.  

 

It is as if energy “condenses” into “mass”, or mass “sublimes” into “translational energy”, 

or some other kind of energy (a process well known by nuclear engineers, as well as say, 

accelerator researchers, but seemingly overlooked regarding gravitation).     

 

It is further very interesting to note that, based on Eq.(1), an object thrown from a celestial 

body with a speed close to that of light, decelerates exponentially, thus to reach very fast a 

constant speed. 

 

How come that; some of our results, such as the retardation of clocks in a gravitational field, 

are practically the same as those of Einstein; some of them, such as the precession of the 

perihelion of Mercury, are approximately, or in the specific case of Mercury virtually the 

same as those of Einstein; and some of them, such as the prediction of no black holes, the 

stretching of a length, the decrease of mass, in a gravitational field, and even more 

fundamentally, the divergence of the inertial and gravitational masses, are very different than 

the basic elements of the frame forwarded by Einstein, is a whole different story, needing to 

be examined, throughout a separate work.  

 

Nonetheless as evoked by Eq.(15), it seems that assuming the equality of the inertial mass and 

the gravitational mass, and overlooking the mass equivalence of the gravitational energy, 

constitute effects of about the same magnitude and amazingly canceling each other; this 

should be how we could reproduce virtually the same result as that of Einstein, in regards to 

the precession of the perihelion of Mercury. This occurrence we believe, does not reduce the 

unequal wholeness of our approach.  

 

At any rate Einstein’s approach leads to the fact that, the “mass-energy relationship” of 

special theory of relativity, the fundamental ingredient to the general theory of relativity, does 

not hold, for values of the couple of mass and energy, belonging to different sets of 

gravitational coordinates.  

 

One can further check that the dimension of Planck Constant, though an invariant within the 

frame of the special theory of relativity, is not preserved, through the general theory of 

relativity. This too, should be an essential alarm. 

 

Our approach is free of such annoyances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 R0 

 

  

z 

- 

 R (zK ) 
   (length of the         

stick meter at the 

location zK)  

  
   
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