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ABSTRACT 

 

We consider the quantum mechanical description of a diatomic molecule of “electronic mass” m0e , 

“internuclear distance” 
0R , and “total electronic energy” E0e. We apply to it the B&O 

Approximation, together with the cast 2

0e0e0 mE R ~h
2
 (we established previously), written for the 

electronic description (with fixed nuclei). Our approach yields an essential relationship for T0, the 

fundamental vibration period, at the total electronic energy E0e , i.e. T0 =   hnn4 21

2 e0mgM 2

0R , 

where 
0M  is the reduced mass of the nuclei, me the mass of the electron, g a dimensionless and 

relativistically invariant coefficient; n1 and n2, are basically the principal quantum numbers of 

electrons making up the bond(s) of the diatomic molecule in hand. The latter relationship essentially 

yields T0~ 2

0R , for the lowest vibrational periods versus the square of the internuclear distance at 

different electronic states of a given molecule, which happens to be an approximate relationship known 

since 1925, but not disclosed so far. Further, for electronic states configured similarly, we determine 

n1n2 to be R0/R00, where R0 is the internuclear distance at the given electronic state, and R00 the 

internuclear distance at the ground state. This allows us to draw a complete systematization of diatomic 

molecules, given that we expect g (appearing to be purely dependent on just the electronic structure of 

the molecule), to stay constant for chemically alike molecules, and we identify 
21nn  to be 

000 RR  for 

diatomic molecules, whose bonds are electronically configured in the same way, 
00R  now being the 

internuclear distance of the molecule picked up as the reference molecule within the chemical family in 

consideration.      

 

 

This work is issued from a totally different perspective than the one considered 

herein. We are not going to reinforce this substantial perspective through this article. 

Nevertheless we should state it briefly, since it allowed us, long ago to derive 

practically everything we present herein. 
1, 2, 3 

Thus it was the author’s original idea 

that, in order to insure the validity of the theory of relativity in any entity existing in 

nature, the “architecture of the internal dynamics” this displays, ought to be made in 

just a given manner.  

 

In effect a natural entity, has got an internal dynamics. Thus it works as a clock. This 

bears a clock period T0; the mechanism in question involves a given mass M0, which 

we call the “clock mass”, and is installed in a space of size R0. The “clock mass”, as 

we shall see, is not a trivial quantity; nonetheless it is not the “total mass” of the 

entity in hand. One can define several clocks masses, for the same entity, regarding 

different internal dynamics this displays.  

 

The clock mass of the electronic motion of a diatomic molecule, for instance, is the 

electronic mass e0m , which can be expressed as (a coefficient) x (the electron mass), 

or just the electronic mass me, were the coefficient of concern accounted for, in a 

different way. On the other hand, the clock mass of the vibrational motion of a 

diatomic molecule is e0e m/m M , where 0M  is the reduced mass of the molecule. 



 

 
 

2 

 

Now, the Lorentz transformations on T0, M0 and R0, were the object brought in a 

uniform translational motion, or similarly, the transformations that these quantities 

would undergo, were the object embedded in a gravitational field, impose that there 

ought to be already an intrinsic relationship between T0, M0 and R0, which turns out 

to be T0 ~ M0
2

0R .
1, 2, 3, 4 

This was our original idea, which we will not stress any 

further, here. 

 

In this article though, we will present a derivation of the relationship we conjectured, 

between T0, M0, and R0, chiefly for diatomic molecules, through the Born and 

Oppenheimer (B&O) approximation, and a fundamental cast we have derived 

previously, which we shall briefly sketch (Sections 1, 2 and 3). Then we will 

elaborate on the quantum numbers that come into play (Section 4). Our approach 

yields the disclosure of an empirical relationship established back in 1925 (Section 5). 

Thus we conclude with a novel systemztization of all diatomic molecules (Sections  6 

and 7). 

 

1. THE UMA CAST 

 

For an atomistic or molecular wave-like object existing in nature, we have shown 

elsewhere the following theorem, first, on the basis of the Schrödinger Equation, as 

complex as this may be, then on the basis of the Dirac Equation, whichever may be 

appropriate, in relation to the object in hand.
4
 

 

 Theorem 1: In a “real wave-like description” composed of I electrons and J nuclei, 

if the (same) electron masses mi0, i = 1,..., I and in general different 

nuclei masses mj0, j = 1,…, J, involved by the object, are overall 

multiplied by the arbitrary number  , then concurrently, 1) the total 

energy E0k associated with the given clock’s motion of the object is 

increased as much, and 2) the size k0R  of the object in which the given 

clock’s motion takes place, contracts as much; in mathematical words 

this is         

 

 { (mi0, i = 1,..., I)   ( mi0, i = 1,..., I) ,  [ (mj0, j = 1,…, J)   ( mj0, j = 1,…, J) ] } 

          k0k0 EE  ,   k0R


 k0R
  .           (1)  

 

By “real” we mean, not “artificially gedanken”; for atomistic and molecular wave-

like objects, “real object” means, an object embodying a potential energy made of 

just Coulombian potentials. 

 

If the object is, say an atom, then k0R  is the radius of it; if the object is a diatomic 

molecule, k0R is the internuclear distance, etc. 

 



 

 
 

3 

The occurrence stated by Eq.(1) further yields an invariance, interestingly strapped to 

the square of the Planck Constant, h
2
. 

 
This is the content of our Theorem 2, restated right here.  

                                                   

Theorem 2: The quantities, 2

k0k0k0 ME R  (k=1,..., K) (associated with the k
th

 internal 

motion of the wave-like object in hand), are invariant in regards to a 

“mass change”, and are all strapped to h
2
. 

 

Thus the grand total energy E0(GrandTotal) becomes 

 

   
.K,...,1k,

M

h
~E

,...E...EEE

2

k0k0

2

k0

k001201)GrandTotal(0





R

                                  (2)     

 

We call this occurrence, the UMA (Universal Matter Architecture) Cast.  

 

Note that primarily, what we do here is in not a “dimension analysis”. Anyhow the 

occurrence we disclose, would not work (i.e. 2

k0k0k0 ME R , for the given clock’s 

motion, would not be invariant in regards to a mass change), if the wave-like object in 

hand is not “real”, though of course, there still would be no problem, dimension-wise.  

 

Soon we shall figure out that the proportionality constant embodied by Eq.(2), 

besides a usual geometry factor and quantum numbers, fortunately, is made of a 

“transferable constant”; indeed this constant seems to depend mainly on the 

electronic configuration of the molecule. Therefore: 

 

i) It remains the same regarding the electronic states of a given molecule, 

provided that these states are electronically configured similarly.  

 

ii) Furthermore, it stays still fairly the same, regarding the ground electronic 

states of molecules belonging to a given chemical family (thus all bearing 

similar electronic configurations). 

 

2. THE B&O APPROXIMATION 

 

The quantum mechanical description of a diatomic molecule can be achieved via the 

usual Schrödinger Equation, involving the “two nuclei” and the surrounding 

“electrons”. This equation, through B&O approximation, is reduced into the separate 

descriptions of the “nuclear” and “electronic” motions. We thus come to solve 

separately the two following Schrödinger Equations, written with the usual notation
5
: 
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Here “A” and “B” designate the nuclei, and “e” designates the electrons. We have then 

the following familiar notation.  

 

 

mA   

mB  

ZA  

ZB    

me    

e      

 

 

: mass of A 

: mass of B 

: atomic number of A 

: atomic number of B 

: electron's mass 

: electron's charge 

 

 

rAi 

rBi 

rii’ 

rAB 

e,B,A  

e,B,AE  

 

: i
th

 electron's distance to A 

: i
th

 electron's distance to B 

: distance between the i
th

 and the i
th

 electron 

: distance in between the nuclei  

: eigenfunction associated with the molecule 

: eigenvalue associated with the molecule 

 

 

Eq.(3) describes the nuclei vibrational motion, about the internuclear distance rAB to 

be input to this equation (for a given electronic state of the molecule), whereas Eq.(4) 

describes the electronic motion around the two “fixed” nuclei. Thus, as usual, one 

solves Eq.(4), for a given electronic state, in order to determine how the eigenvalue Ee 

varies with respect to rAB, and find the internuclear distance rAB, which makes 

minimum Ee, more precisely Ee(rAB) ; we call rABmin  and Eemin, respectively, the 

internuclear distance and the eigenvalue in question (for the given electronic state); 

this is then rABmin   as rAB, to be input to Eq.(3). Normally Eemin   is negative; yet below, 

by Eemin we shall mean |Eemin|. 

 

The constant 0k  to be input to Eq.(3) is given by 

 

                                       0k  = 
 

minABrABr
2

AB

ABe

2

r

rE




  .                                               (5) 

 

Knowing 0k  and rAB related to the ground electronic state of the diatomic molecule in 

hand, one can subsequently construct Eq.(3), and solve it as usual, for the vibrational, 

also rotational eigenvalues EA,B, associated with the electronic state of the molecule of 

concern.  

 

EA,B becomes,   

                           EA,B = 
 

;0,1,...v0,1,...;j,h
2

1
v

Iπ8

h1jj
BA,

AB

2

2












                (6)  

 

IAB is the “moment of inertia” of the nuclei: 

 

                                          IAB = MAB  r AB

2  ,                                                                 (7) 

    

where MAB is the nuclei reduced mass. 

 

B,A  is the classical vibrational frequency of the molecule, the inverse of which,   

TA,B , is the classical vibrational period of the molecule: 
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                                           TA,B = 2
0

AB

k

M
 .                                                              (8) 

 

Thus, along this definition, EA,B [as expressed by Eq.(6), above], is the solution of 

Eq.(3), for the nuclear motion of the molecule.  

 

3. THE “VIBRATION PERIOD”, VERSUS THE “DIATOMIC MOLECULE 

CLOCK MASS” AND THE “INTERNUCLEAR DISTANCE”  

 

The B&O approach, together with the UMA Cast, stated above, i.e. Eq.(2), allows us 

to draw an elegant relationship for the vibrational motion of a diatomic molecule, in 

terms of different masses taking part in the internal motion of the molecule, and the   

“internuclear distance” coming into play. 

 

Thus, Eq.(2), i.e. 2

k0k0k0 ME R ~ h
2
, must hold on the basis of Eq.(4); this equation 

indeed embodies a potential energy term strictly made of Coulombian potential 

energies. The eigenvalue Ee [more precisely Ee(rAB)], assumes the value Eemin  when 

rAB takes the value of rABmin. Furthermore, the only mass that comes into play in 

Eq.(4), is the electron mass, me; in other terms the “clock mass” in question to be 

associated with the electronic motion of the molecule (with fixed nuclei), is made of 

only electron masses coming into play, and obviously all bearing the mass me.  

 

Thence 

          Eemin me
2

ABr min INg  ~  h
2 

     [Eq.(2), written based on Eq.(4)] ,                (9) 

 

where we inserted the proportionality constant INg  of the invariance in question (cf. 

Theorem 2); the setting of of this relationship as an equality, now only requires a 

geometry factor and appropriate quantum numbers, as elaborated below.   

 

The validity of Eq.(9) is checked elsewhere.
6
 Nevertheless the check of our end 

results derived via Eq.(9), should already constitute a “ proof” of it.   

 

Ee(rAB) can be as usual expressed fairly in terms of the force constant 0k , defined by 

Eq.(5), as 

                            Ee(rAB) =  Eemin + 
2

1
 0k (rAB – rABmin)

2
 .                                    (10) 

 

It is true that this relationship does not display characteristics such as 

“anharmonicity” and “dissociation”; but throughout this work we are going to deal 

only with the ground vibrational level of the states of concern. Thus, even when we 

deal with an excited electronic state, Eq.(10) turns out to be quite valid for the ground 

vibrational level of it. 

 

 

 

Ee(rAB) vanishes at the abscissa rAB, which we can define with respect to rABmin, i.e. 
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rAB = p rABmin  [value which makes Ee(rAB), vanish] ;                         (11) 

 

p is an unknown parameter at this stage, though it appears to be roughly 2.  

 

Eqs.(10) and (11), provides us with the possibility of expressing Eemin, as   

 

                     Eemin = 
2

1
0k (p  1)

2
 2

ABr min
 .                                                  (12) 

 

We plug the RHS of this equation in Eq.(9); next we use Eq.(8) to eliminate the force 

constant 0k ; thus we arrive at the simple expression for B,AT , i.e. 

 

         B,AT
eABkIN mgg

h

1
~ M 2

ABr  ,                                                 (13) 

 

where gk replaces (p-l)
2
/2. 

 

Below for simplicity, we call B,AT , 0T ; B,A ,0 ;MAB, M0, and rAB, r0.  

 

The quantity  

 M0 = e0mM = 
e

0

e
m

m
M

                                                         (14)  

 

(formulated on the basis of the electron mass), has the dimension of a mass. We call it 

the “vibrational clock mass” (to be associated with the vibrational motion of the 

diatomic molecule in hand).  

 

The proportionality constant in Eq.(13) shall embody a geometry factor, and as 

discussed below, quantum numbers. A geometry factor of 2   originates from the use 

of Eq.(9) [where h
2
 may be read as h

2
/4 2 , and accordingly, 2   is left after the 

square rooting, on the way to Eq.(13)]; an other 2   factor originates from the use of 

Eq.(8); thus altogether, a geometry factor of  4 2 should multiply Eq.(13).  

 

Recall that because of quantum defects, n1 and n2 are not integer numbers. 

 

The quantum numbers to be introduced in Eq.(13) appear to be more peculiar, and we 

elaborated on it, as summarized below. Nonetheless, one can sense that [h
2
]
 
in Eq.(9), 

should be in fact read as usual, as [n
2
 h

2
], more precisely as [n1n2 h

2
], n1 and n2 being 

principal quantum numbers of electrons making up the bond(s) of the diatomic 

molecule in hand
3 

(we shall soon work them out). 
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Eq.(13), thus becomes 

       e0

21

2

0 mg
nnh

4
T M


 2

0r ,                            (15) 

where g replaces kINgg .  

 

Note here that, the quantum numbers n1 and n2 are not necessarily associated with 

excited states of a given ground state. As it will become clear soon, we also propose 

to associate them, with respectively, the ground states of members of a given chemical 

family, in reference to a given member of this family, more precisely the one 

possessing the lowest vibrational period.  

 

Eq.(15), though g is not known beforehand, is somewhat rigorous. In other terms, 

despite the B&O approximation we adopted, also the approximate Morse potential we 

introduced at the level of Eq.(10), the use of g (to be determined), ultimately insures 

the equality of Eq.(15).  

 

It is apparent that, g is necessarily related to the electronic structure of the molecule’s 

bond. Thus, for alike bonds, in a given chemical family, we come to expect g to be 

virtually the same. We call g the “molecular bond looseness factor”, for it can be 

checked that, the inverse of it is nearly proportional to the dissociation energy of the 

molecule. 

 

Our approach allows us to draw a whole new systematization of diatomic molecules, 

and more, such as and the elucidation of an empirical relationship known since long 

ago, as well as H2 irregular spectroscopic data.
 7, 8

 

  

The introduction of the product of quantum numbers, n1n2 requires a demonstration, 

and that is what we undertake briefly right below, primarily on the basis of the H2 

molecule spectroscopic data. Yet Eq.(15) is worth to be analyzed, even before the 

elaboration of quantum numbers. Indeed already the plots of 0T  versus 2

00 rM , for 

members of a given chemical family, exhibit nicely increasing, almost faultless, 

smooth curves; we present eight examples in Figures 1 -  7. 

 

4. ELABORATION ON THE QUANTUM NUMBERS 

 

The presence of quantum numbers in Eq.(15), is right away induced by the 

identification of the RHS of Eq.(2) as 
2h . This equation is further transformed into 

Eq.(9), written for the mere electronic description of the molecule [cf. Eq.(4)].  

 

The excited electronic eigenstates of the molecule should anyway involve quantum 

numbers.
*
 The simplicity of Eq.(2) or Eq.(9),  clearly leaves no other room to 

quantum numbers that shall come into play in these equations, other than that, right 

next to 
2h .  

 

                                            
*
 Any excited eigenstate shall obviously involve quantum numbers. But here, we are particularly 

interested in  electronic excited eigenstates. 
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Thus a composite quantum number N (i.e. the product of the two principal quantum 

numbers to be associated with the bond electrons, in the case of a diatomic molecule),  
should come to multiply h

2
, in Eq.(2) or Eq.(9), regarding an excited eigenstate, in 

just the same way the square of an integer quantum number related to an excited state 

of the simplest wave-like objects (for example, the hydrogen atom), comes in a similar 

relationship, to multiply to h
2
.  

 

This piece of information makes that, were N somehow known, one can introduce it 

right next to h
2
, into the framework of the ground level wave-like description (i.e. the 

Hamiltonian) of the entity in hand, and consequently determine the eigenvalue, and 

the characteristic length induced by the resulting formulation.  

 

Though here, there is a peculiarity. 

 

Eq.(9), in the simplest case of the hydrogen atom, shall (with the usual notation) be 

written as 
28 En INg me

2

nR  =  n
2
h

2 
  ;              (9) (rewritten)                    

       (for the hydrogen atom, INg  is unity) 

                         

here En is the total energy of the n
th

 electronic state, Rn is the corresponding 

characteristic size, and n the principal quantum number; INg  is a coeffcient related to 

the electronic configuration we visualized (next to the geometry factor), at the level of 

Eq.(9).   

 

In the case of the hydrogen atom, INg  is unity, regardless n. Thus, in this case i) INg  is 

unity, at the ground state, but also ii) INg  remains the same at all electronic levels. 

 

Neither property holds for systems of higher complexities, though as we show, an 

equation similar to Eq.(9) can well be written for any diatomic molecule, or further 

any wave-like entity.   

 

Since INg  [of Eq.(9)], more generally g [of Eq.(15)] appears to be purely related to the 

electronic structure of the entity in hand, we expect them to remain the same, for 

alike electronic configurations. This occurence holds within the frame of alike 

electronic states of a given molecule, as well as within the frame of alike ground 

states of molecules belonging to a given chemical family. 

 

However, as one jumps from the ground state of a complex system, such as that of a 

diatomic molecule, to an excited state of this entity, it is not obvious that the 

electronic configuration shall stay the same; in fact, generally it will not. Take for 

instance the hydrogen molecule. Its excited electronic states a priori, will not bear the 

same electronic configuration as that of the ground state, unless the two electrons are 

excited in a complete symmetry. Even then, the shielding effects may not be the same.  

 

This is the peculiarity we wanted to clarify. 
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Thus, as the molecule jumps from its ground state to an excited state, in general, it is 

not only that, h
2 

is multiplied within the framework of the wave-like description, by 

the appropriate quantum number; but we should further represent the change that 

takes place in the electronic structure. That can be taken care of, by a corresponding 

change in the coefficient INg  of Eq.(9).  

 

In fact, altering just h
2
, and altering both h

2 
and INg , so that IN

2 g/h  is changed by the 

same amount, within the frame of Eq.(9), are mathematically equivalent operations, 

yet as discussed, physically they appear to be quite different.  

 

Thereby we can conceive an excited electronic state as achieved in two steps: 1) 

Switching the ground state electronic configuration into the new configuration by just 

changing INg . 2) Jumping from this configuration to the new quantum state. 

 

For electronic states configured like the ground state, we will have to achieve only the 

second step. 

 

This yields the content of our Theorem 3. 

 

Theorem 3: Were the atomic or molecular wave-like object in hand, at a given 

electronic state, characterized by the composite quantum number N,  

then the eigenvalue and characteristic length associated with this state, 

becomes the output of the formulation one obtains by multiplying h
2
 

with N, in the framework of the ground state description, provided that 

the two states are configured similarly. 

 

So the introduction of appropriate quantum numbers in Eq.(9), next to 
2h  (within the 

framework of the wave-like description), in order to take care of the excited electronic 

eigenstates of the molecule as complex as this may be, appears to be as standard as 

this is, for the simplest atomic object, provided that the two states are configured 

similarly. 

 

We can predict the solution of the new set up, through Theorem 1. It can be obtained 

based on a reformulation of this theorem. Thus we establish our Theorem 4 regarding 

an excited electronic level of the wave-like object in hand. 

 

Theorem 4:    In a “real wave-like ground description” if, in the aim of expressing an 

excited eigenstate, 
2h  is multiplied by the composite quantum number 

N (the inverse of the eigenvalue related to this eigenstate, were the 

ground state energy normalized to unity), then concurrently, a) the 

magnitude of the total ground energy E0 associated with the given 

wave-like object, is decreased as much, to become E, the new 

eigenvalue, and b) the corresponding ground state size 0R  stretches as 

much, to become R, the new size, provided that the two states are 

configured similarly; in mathematical words this is     

 

   [
22 hh N ]    {[

N

0

0

E
EE  ], [ 00 RRR N ]}.              (16) 
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Note that Theorem 6 holds for any excited eigenstate (rotational, vibrational, 

electronic, or else). 

 

This theorem, for excited states of the molecule, configured like the ground state, 

yields at once 

                                  
0R

R
N             (17)                  

(composite quantum number of the excited eigenstates, 

 were  this configured like the ground state). 

 

This interestingly holds no matter how complex the molecule may be.  

 

Accordingly we establish our next theorem. 

 

Theorem 5:  The composite quantum number to be associated with an excited 

eigenstate, is the mere ratio of the size the object displays at this 

excited state, to the size the object displays at the ground state, 

provided that the two states are configured similarly. 

 

Theorem 5 can be checked for the electronic states of hydrogen atom. It is surprizing 

that it holds for any object and for any excited eigenstate the object may involve. 

 

What if the electronic structure of the excited state is not the same as that of the 

ground state? 

 

The answer is fortunately not complicated. Since the the coefficient INg  in Eq.(9) 

comes to multiply the mass of the electron, which happens to be the only mass taking 

place in the description of the electronic motion of the diatomic molecule, any change 

in INg , evidently can be represented by a corresponding hypothetical change in the 

mass of the electron.  

 

If further, we are concomitantly to consider a quantum number N  to be associated 

with the excited eigenstate in question (i.e. configured in a different way than the 

ground state), then based on Eq.(9), this state can well be described by merely 

altering h
2
/me in the framework of the ground state of the molecule by 

N finalINinitialIN )g(/)g( , where the subscripts “initial” and “final” refer respectively to the 

ground state and the excited electronic state in consideration. 

 

The ultimate output, can be right away established via Theorems 1 and 2. 

 

Theorem 6:  The ratio of the size a diatomic molecule displays at an excited state, to 

the size it displays at the ground state, is equal to                    

N finalINinitialIN )g(/)g( , i.e. the composite quantum number to be 

associated with the excited state, times a coefficient, the inverse of 

which quantifies how much the overall ground state electronic 

configuration is altered.  
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In what follows we shall solely focus on excited electronic eigenstates [since we 

visualize Eq.(15), for just the lowest vibrational state of an electronic eigenstate]. 

 

Note that the usage of Eq.(17) along Eq.(15), requires that the coefficient g is not 

altered as the molecule passes from its ground level to the given excited electronic 

state, so that we can plot T, the largest vibrational period at the given excited 

electronic state, versus 221N R/ , where R  is the size of concern, at this eigenstate. 

 

5.  THE  DISCLOSURE  OF  THE  AGED EMPIRICAL  RELATIONSHIP   

r
2

 = Constant, AND THE COMPLETE SET OF H2 ELECTRONIC 

VIBRATIONAL DATA 

  

Recall that the following approximate empirical relationship, evoking very much 

Eq.(15), had been established for a given diatomic molecule, back in 1925, yet not 

unveiled so far:
9, 10, 11, 12, 13   

 

 2r  Empirical Constant ;                          (18)  

 

(approximate relationship written in 1925 

     for the electronic states of a given molecule) 

 

here,   is the lowest vibration frequency, i.e. the inverse of the largest vibrational 

period T, related to a given electronic state of the molecule, and r  the corresponding 

internuclear distance.  

 

The “Empirical Constant” is then to be determined separately, for each diatomic 

molecule.  

 

Eq.(18) bears the same cast as that of Eq.(15) (as far as the dependency of the 

vibrational period on the internuclear distance is concerned); yet it does not include 

the quantum numbers.  

 

Eq.(15), together with Theorem 5, alternatively suggests that we should look at the 

relationship  

                       2/3

e00

2
2

e0

0

2

rmrg
h

4
rmg

r

r
h

4
T MM





  ,                          (19) 

(relationship written for the largest vibrational period  

 of excited electronic states of a given molecule) 

 

where 0r  is the internuclear distance at the very ground state, as usual.  
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0r/r  taking place in the above relationship, following Theorem 5, is just the 

composite quantum number to be associated with the electronic state taken in 

consideration.  

 

Eq.(19) makes that based on any molecule, regarding the electronic states bearing 

similar configurations, for which g, the bond looseness factor, remains about the 

same, 2T  versus 3r  should display a straight line.  

 

The approximate empirical constant of Eq.(18), can now be evaluated from Eq.(19), 

as  

 Empirical Constant 

e0

2 mg4

h

M


N
;                          (20) 

 

recall that N is the composite quantum number, i.e. 0r/r  (staying indeed roughly the 

same, were r is not far from r0), making up that the “constant” is question is indeed 

only approximately, a constant, supposing anyway that the electronic states in 

question, are configured similarly, so that g stays practically constant, throughout. 

 

This entirely discloses the mechanism behind the approximate empirical relationship 

[Eq.(20)], established back in 1925.  

 

Thus, Eq.(20) makes that, it is not really the quantity 2r  which is a constant for 

electronic states of a given molecule, configured similarly, but based on Eq.(19), more 

likely it is the quantity 

Constant = 23r / .                (21) 

 

(written by the author, for similar  

electronic states of a given molecule) 

 

This new constant then is 

Constant 

0e0

2 rmg4

h

M
 ;              (22) 

 

(written by the author for similar  

electronic states of a given molecule) 

 

recall that 0r  dominates the internuclear distance, at the ground state. 

 

As an example, 
2T  versus 

3r  for H2 molecule, is sketched in Figure 8. Thus some 23 

states out of 29, for which data is available, are neatly aligned. Herein, we included 


2H , which too seems to display the same g as that of H2 ground state; we find g0.8. 

The remaining 6 electronic excited states of H2 seem to be configured differently. We 

call these “ambiguous states” (the previous 23, being seemingly all configured 

approximately like the molecule’s ground state).  
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The study of the electronic vibrational data of H2 molecule is undertaken elsewhere.
8 

 

To analyze the remaining 6 data (out of 29), we note, out of Eq.(15) that, switching 

the nuclei reduced mass M0 of alkali molecules or alkali hydrides into that of the 

hydrogen molecule, should virtually transpose the corresponding vibrational period, 

into the vibrational period of H2 electronic state of of the same electronic character; 

recall that switching the nuclei mass does not practically affect the electronic 

structure of the molecule, and accordingly we should expect that, amongst H2 

electronic states there are states, configured like the ground electronic states of alkali 

molecules and alkali hydrides.   

 

Therefore we anticipate that the 6 ambiguous electronic states of H2 should be 

configured just like the respective ground electronic states of alkali molecules and 

alkali hydrides, and vice versa.  

 

6.  SYSTEMATIZATION OF GROUND STATES OF ALL DIATOMIC 

MOLECULES  

 

Our approach makes that we can visualize Eq.(19) not only regarding the electronic 

states of a given molecule, but also regarding the ground states of molecules 

belonging to a given chemical family, thus exhibiting similar electronic 

configurations, with virtually the same g. 

 

Let us elaborate on this a little. 

 

Above we have rigorously proven that Eq.(15) holds for any diatomic molecule, i.e. 

 

2

0e0

21

2

0 rmg
nnh

4
T M


 ,        (15) (rewritten) 

 

21nn  being quantum numbers induced by the Planck Constant [cf. Eq.(9)(rewritten)]. 

 

Within the frames of Theorems 4 and 5, regarding the electronic states of a given 

molecule, we have established that 21nn  turns out to be the ratio of the internuclear 

distance of the molecule at the given excited state, to the internuclear distance of the 

molecule at the ground state, provided that these states are configured alike. 

 

We have further demonstrated that already the cast 2

00 rT M~  holds fairly well 

regarding diatomic molecules belonging to a given chemical family, thus being 

configured similarly, so that g stays virtually the same, throughout each one of the 

Figures 1-7. 

 

Further straightening up of these curves, requires to specify 21nn . 
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At this stage consider Figure 8, where we analyzed 2H  spectroscopic data, and found 

out that the ambiguous states are configured like alkali hydrides, and 2Li . 

 

This suggests that, quantum mechanically we can well describe, say the ground state 

of 2Li , on the basis of  an equivalent 2H  excited state. 

 

Therefore the corresponding quantum numbers 21nn , we propose to associate with 

2Li  ground state, in comparison with the 2H  ground state, following Eq.(17) and 

Theorem 5, becomes the mere ratio of the internuclear distance of 2Li  at its ground 

state, to the internuclear distance of 2H  at its ground state, given that the 2H  and 2Li  

bonds, are configured similarly. 

 

Hence, we rewrite Eq.(19) (not for the excited levels of a given molecule), but for the 

ground states of molecules belonging to a given chemical family, and accordingly 

being configured alike: 

2/3

i000i0

2

i0i0

00

i0

i0 rrg
h

π4
rg

r

r
h

π4
T MM

22

  ;                        (23) 

(written by the author for the ground vibrational  

period of molecules belonging to a given chemical family) 

 

here i0T  is the ground state largest vibrational period of the ith member of the 

chemical family in consideration; M0i is the reduced mass and; i0r  is the ground state 

internuclear distance of this member; 00r  is the internuclear distance of the ground 

state of the family’s member, chosen as the reference molecule; more precisely we 

pick up as the member bearing the lowest vibrational period. 

 

Therefore 
2

i0T  versus 3

i0i0 rM  for chemically alike molecules, should display a linear 

behavior, the slope of which shall furnish g, to be associated with the chemical family 

in consideration.  

 

Thus we can now write an equation similar to Eq.(21), in regards to the ground states 

of molecules belonging to a given chemical family: 

 

 2/3

i000i0i0

21

2

i0i0i0 rrω
nn

rω
Constant M

M
  ,                     (24) 

 

(written by the author, for the ground states  

of chemically alike molecules) 

 

where i0  is the inverse of the ground state vibrational period of the molecule of 

concern. 
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The constant in question shall be expressed as 

 

 

e

2 gm4

h
Constant


 .                    (25) 

 

Although 00r  is a constant within a given chemical family, we still included it, in the 

RHS of Eq.(24), to define our constant to be the same for all chemical families, if g 

remained the same, thus as suggested by the RHS of Eq.(25).  

 

In Figures 9-15, based on experimental data,
13, 14, 15

 we present i0T  versus 3

i0i0 rM , 

for seven chemical families, for which the coefficient g, stays indeed neatly constant. 

The constancy of 2/3

i0i0i0 rM  in harmony with Eqs.(24) and (25), is quantitatively 

demonstrated, in (the fifth column of) Tables 1-7.  

 

g’s are calculated from Eq.(25) for different chemical families, and are presented in 

Table 8. Note that g’s vary between 0.79 and 0.01. 

 

Note that following Eqs. (24) and (25), the value of constancy of 2/3

i0i0i0 rM  depends, 

both on g and 00r  (the reference internuclear distance of the family of concern), which 

makes that the “constants” calculated in (the fifth columns of) Tables 1-7, differ. 

 

Note further that, the standart deviation on the constants in question, is roughly ten 

percent. There seems to be two reasons for this. The first one is that chemically alike 

molecules, on the contrary to our assumption, are not exactly configured similarly, 

which may make that g is not a constant throughout. The second one is that our 

supposition that the RHS Eq.(17), can be used to replace the the composite quantum 

number 
21nn  in Eq.(15), even for chemically alike molecules (where we choose the 

molecule with the lowest vibrational period, as the reference molecule), may not be 

rigorous. Along this line it seems interesting to recall that, when we use the principal 

quantum numbers associated with the bond electrons, straight, to compose 
21nn , 

instead of using Eq.(17), we come out with the constancy of 
21

2

i0i0i0 nnrω /M , not any 

worse than that of  2/3

i0i0i0 rω M [cf. Eq.(24)].
7,8 

 

Since g happens to be roughly, inversely proportional to the dissociation energy of the 

molecule, as one can observe from Table 1, it indeed decreases as the bond becomes 

stronger. Thus, the smaller g is, the higher is the number of the covalent bonds, 

making the overall bond of the diatomic molecule, or the higher is the number of free 

electrons an atom possesses, the looser will be the bond it will make with, say, an 

halogen, thus the higher will g be, etc.
 16
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      Table 1 Checking the Validity of Eq.(23), for Alkali Molecules 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
3
c) 

 

 

)A(

r0


 

 

23

00

0

r

T
/M

 

 
ErrorlativeRe

 as  

Referred to 

the Average 

 

H2 0,50 0,24 0,74 0,53 0,52 

Li2 3,50 2,89 2,67 0,35 0,01 

LiNa 5,33 3,89 2,90 0,34 0,03 

Na2 11,50 6,34 3,08 0,35 0,01 

NaK 14,48 8,06 3,50 0,32 0,08 

K2 9,49 10,80 3,92 0,45 0,29 

KRb 26,83 13,2 4,07 0,31 0,11 

Rb2 42,47 17,3 4,21 0,31 0,12 

RbCs 52,04 20 4,42 0,30 0,15 

Cs2 66,47 23,8 4,64 0,29 0,17 

Average    0,36 0,15 

 

  

 Table 2 Checking the Validity of Eq.(23), for O2 - like Molecules  
 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
3
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

  

O2   8,00   0,64 1,21 0,17 0,21 

S2 15,99 1,39 1,89 0,13 0,07 

Se2     39,97 2,56 2,16 0,13 0,07 

Te2     63,82 4,00   2,59 0,12 0,14 

SO  10,67     0,90   1,49 0,15 0,07 

Average    0,14 0,11 
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Table 3 Checking the Validity of Eq.(23), for N2 - like Molecules 
 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
3
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

N2 7,00 0,43 1,09 0,14 0,06 

P2 15,49 1.29 1,89 0,12 0,06 

PN 9,65 0,76 1,49 0,13 0,00 

 

Average 

   0,13 0,04 

 

 

Table 4 Checking the Validity of Eq.(23), for Halogens 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

F2 11,21 9,50 1,44 1,64 0,06 

Cl2 17,96 17,49 1,99 1,47 0,15 

Br2 31,15 39,96 2,28 2,08 0,19 

I2 46,87 63,47 2,67 2,13 0,22 

BrF 15,04 15,35 1,76 1,69 0,02 

ClF 12,93 12,31 1,63 1,64 0,05 

ICl 26,23 27,42 2,32 1,51 0,13 

Average    1,74 0,12 
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 Table 5 Checking the Validity of Eq.(23), for CsBr - like Molecules  

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

CsBr 52,63 49,92 3,14 1,24 0,51 

CsI 71,63 64,94 3,41 1,22 0,49 

NaCl 26,46 13,95 2,51 0,68 0,17 

NaBr 31,98 17,86 2,64 0,74 0,09 

NaI 35,15 19,45 2,90 0,66 0,19 

KF 25,64 12,78 2,55 0,62 0,24 

KCl 35,95 18,59 2,79 0,67 0,19 

KBr 43,55 26,26 2,94 0,79 0,03 

KI 47,48 29,89 3,23 0,75 0,08 

RbCl 39,53 25,07 2,89 0,81 0,01 

Average    0,82 0,20 

 

 

Table 6 Checking the Validity of Eq.(23), for BF - like Molecules 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

BF 7,26 6,72 1,26 1,76 0,26 

BCl 12,06 8,38 1,72 1,07 0,24 

BBr 14,77 9,66 1,88 0,98 0,31 

AlCl 20,95 15,24 2,13 1,071 0,24 

AlBr 26,64 20,11 2,29 1,12 0,20 

InCl 31,71 26,82 2,31 1,36 0,03 

InI 56,72 60,32 2,86 1,66 0,18 

TlCl 35,09 29,87 2,55 1,24 0,12 

TlBr 52,27 57,98 2,68 1,83 0,30 

TlI 66,67 78,31 2,87 1,97 0,40 

Average    1,41 0,23 
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Table 7 Checking the Validity of Eq.(23), for CO - like Molecules 

 

 

 

Molecules 

 

M0 

(amu) 

 

0T (cm
-1

 

x10
4
c) 

 

 

)A(

r0


 

 

23

00

0

r

T

/M
 

 
rlativeErroRe  

as Referred 

to the 

Average 

 

CO 4,67 6,86 1,13 2,64 0,47 

CS 7,86 8,73 1,53 1,65 0,09 

SiO 8,13 10,18 1,51 1,92 0,07 

SiS 13,43 14,93 1,93 1,52 0,16 

GeO 10,23 13,15 1,65 1,94 0,08 

SnO 12,27 14,09 1,84 1,61 0,10 

SnS 20,62 25,25 2,06 1,88 0,04 

PbO 14,00 14,85 1,92 1,49 0,17 

PbS 23,49 27,72 2,39 1,55 0,14 

Average    1,80 0,15 

 

 

Table 8 Bond Looseness Factors of the Chemically Alike 

Diatomic Molecules 

 

 

 

Chemical Family 

 

Bond 

Looseness     

Factor (g) 

H2, Li2, Na2, K2 0.79 

O2, S2, Se2, Te2, OS 0.05 

N2, P2, PN         0.04 

F2, Cl2, Br2, I2, BrF, ClF, ICl 0.04 

CsF, CsBr, CsI, NaCl, NaBr, NaI, 

KF, KCl, KBr, KI, RbCl 

 0.01 

BF, BCl, BBr, AlCl, AlBr, InCl, 

NBr, InI, TlCl, TlBr, TlI 

0.05 

CO, CS, SiO, SiS, GeO, SnO, SnS, 

PbO, PbS 

0.13 
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7. CONCLUSION 

 

It is interesting to note that Eq.(19) frames the force constant k of the molecule at the 

excited state of concern, as  

       
3

2

r

fe
k  ,                             (26) 

along 

eIN

2

2
2

mrg4

h
fe


 ;                  (27) 

 

here, e is the electron charge, and f is a dimensionless constant. 

 

Eq.(26) dimension-wise, is somewhat obvious, if one proposes to relate the force 

constant to the internuclear distance. This correlation was in effect proposed 

sometime ago, by Bratoz et al., for alkali hydrides,
17,18

 for which f is reported to be 2. 

Our estimation, based on the data
12

 is, on the average, 2.6.  

 

f was subsequently obtained by Salem and Ohwada
19,20 

which then, based on 

empirical presumptions, chiefly for molecules containing alkali atoms, leads to 

 

    )1N)(1N(
2

1
f ji   ,                                                 (28) 

 

where Ni and Nj, are the respective number of electrons residing outside of the 

complete shells of the atoms making up the diatomic molecule. 

 

Note thence that, under this form f, thus g, indeed stay constant, just the way we had 

originally conjectured. 

 

Eq.(26) yields 8 for alkali halides, whereas based on the data, and on the average, we 

come out with 11.1.   

 

Recall nonetheless that in order to obtain our results, we followed a totally different 

path, than that induced by Eq.(26). Moreover we arrived at our result, primarily 

regarding the electronic states of a given molecule. The literature we reviewed does 

not coop at all with such an aspect.     

 

Note further that recent trials, on the “problem of transferable spectroscopic 

constants”,
 
despite satisfactory results they may furnish, are far from displaying how 

the fundamental quantities of mass, space and time (i.e. clock mass, clock size and 

period of time of the clock motion), are structured in interrelation with each other, in 

the architecture of molecules,
21

 in fact just the way Eq.(19) reveals. 
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