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ABSTRACT 

 

The mass of an electron bound to a nucleus, due to the “equivalence of mass and energy”, 

based on the special theory of relativity, should decrease, as much as the binding energy this 

electron delineates. This, so far, seems to have been overlooked. The magnitude of the bound 

electron’s mass decrease, is an effect about twice the magnitude of the Dirac’s relativistic 

effect. Furthermore, it is in the opposite direction, which makes that the energy levels, 

contrary to what Dirac had predicted, should be (as compared to Bohr’s, as well as 

Sommerfeld’s energy levels) shifted (not downward, but), upward. The magnitude of this shift, 

surprizingly, turns out to be just as much that of Dirac’s shift, i.e. 1.81x10
-4 

ev for n=1, and 

1.15 x10
-5 

ev for n=2, for the H atom  (and upward); the shift for (l=1, n=2) is about %10 of 

the shift for (l=1, n=2). Thus the bound electron’s mass decrease, may partly eradicate some 

of the diverse speculations designed to cover the “upward shift anomalies”, Dirac’s theory 

does not predict, such as Lamb effect, estabished more than half a century ago. The mass 

decrease of the bound electron, on the other hand, amazingly induces at once, a “change of 

the metric nearby the nucleus”. The cast of our approach furthermore (contrary to 

Sommerfeld’s framework), remains applicable to the precession of the perihilion of the 

planets around the sun. 

 

 

1.   INTRODUCTION: OWING TO THE EQUIVALENCE BETWEEN MASS  

      AND ENERGY, THE PROPER MASS CAN WELL BE ALTERED. 

 

Dirac, composed his relativistic wave equation, together with an elegant solution, by taking 

into account the relativistic behaviour of the electron(s) around the nucleus.
1
 Sommerfeld,

 2
  

had already improved previously, Bohr’s Atom Model,
3
 based on the same idea.  

 

Neither of them however, had considered the fact that the mass of the electron, as well as 

(though in a slim proportion) that of the proton, owing to the equivalence between mass and 

energy, should decrease when bound to each other, still as implied by the special theory of 

relativity.
4, 5 

 

Apparently, noone afterwards had registered a thought regarding the fact that the proper mass 

(i.e. the rest mass in empty space) of the electron, just like that of the proton (in general, that 

of the nucleus) should decrease, when these form a bond with each other.  
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The reason such a process has been overlooked, is presumably the fact that as a first strike, it 

looks indeed conflicting that, an elementary particle would in anyway be altered, through an 

“ordinary” electrostatic interaction with an other one.  

 

However, we know that the proton and the electron, when bound to each other in the 

hydrogen atom, weigh less than the sum of the proton and the electron, carried away from 

each other; the mass deficiency in question is (by taking the speed of light, unity), exactly 

equal to the binding energy of the proton and the electron in the hydrogen atom, i.e. 13.6 ev, 

based on the fundamental relationship, about the relativistic equivalence between mass and 

energy 5 

 

          (Energy released, or acquired) = (Magnitude of the algebraic increase in the mass)  

                                                                x (Speed of light in empty space)
2 

.                

 

So, contrary to the widespread opinion, the electron or the proton cannot be the same, when 

bound to each other; they are different. Their internal dynamics altogether, thus weaken as 

much as 13.6 ev, when they are bound to each other, to shape up the hydrogen atom.  

 

Many scientists though, still firmly think that there is the “proper mass” (rest mass) and the 

“relativistic mass” (defined within the frame of the special theory of relativity), and that the 

proper mass is, whatsoever an invariant, which is a characteristic of matter, and that is all. 

Generally speaking, this is unacceptable. The proper mass of a given particle on the whole, at 

rest may, depending on the circumstances, embody a more or less energetic internal motion; 

this will, one way or the other, affect the proper mass. 

 

Suppose indeed that Captain Electron (we mean, the electron itself) is cruising in a full 

electric isolation, with a uniform translational velocity. So does Captain Proton (i.e. the 

proton itself). They approach to each other. Then (based on the special theory of relativity) 

we would be certain that, Captain Electron in its own frame of reference, all the way through, 

preserves its identity, defined at infinity. (So will also do Captain Proton.) If now, we remove 

the previous electric isolation, Captain Electron and Captain Proton, because of the electric 

attraction force, they mutually create, shall start getting accelerated toward each other. The 

“extra kinetic energy” they would acquire through this process, shall be supplied by the 

system made of the two. Their total energy [i.e. (the sum of their relativistic masses) x (the 

speed of light)
2
], through the motion, shall remain constant, and equal to the equivalent of the 

sum of their initial relativistic masses. (Otherwise, the energy conservation law would be 

broken.) Let us suppose for simplicity that in the latter case (where we have no electric 

isolation), they start, far away from each other, at rest; then their initial relativistic masses 

are, essentially identical to respectively their rest masses. If now the accelerating Captain 

Electron, say in Captain Proton’s frame of reference, hurts an obstacle and looses all the 

kinetic energy, it would have acquired through the attraction process; thence, it must 

concurrently dump a portion of its rest mass, and this, as much as the amount of the kinetic 

energy it would have piled up, on the way.
*
  

                                                 
*
 It was an incomparable privilege to have discussed with Professor R. Feynman, the very first seed of the idea 

presented herein, and to have been encouraged with his support, through a Fulbright visiting stay at California 

Institute of Technology, back in 1984. It is also a privilege to have been backed up by Professor Rozanov, 

Head of Laser PlasmaTheory Department of Lebedev Institute, Moscow. 
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Thus, we cannot say that the proton and the electron are the same, after we have retrieved 

from the system made of the two, a given amount of energy, no matter how much. The 

greater is the energy extracted, the harder will be the harm caused in their internal dynamics, 

conseqeuntly in their proper masses defined at infinity.  

 

This is exactly what happens when, say the hydrogen atom is formed, except that the electron, 

as referenced to the proton is not anymore at rest, but possesses a given amount of kinetic 

energy; an energy of 13.6 ev is needed, to carry the electron away from the proton, back to 

infinity.  

 

It is thus clear that as referenced to the proton, or (since the proton is much too big as 

compared to the electron) practically the same, as referenced to the “laboratory system”, the 

hydrogen electron’s proper (rest) mass, is altered as much.  

 

Just the same way, the daily production of thermal energy, is due to the transformation of a 

minimal part of the mass entering in reaction, into energy. Thus, the reaction products weigh 

less than the reactants, and this, as much as the energy produced throughout.  

 

The fuel, i.e. coal, petroleum, uranium, plutonium, anything, in a power plant of, say         

3000 MWthermal, continuously working for a period of one year, thus producing an energy 

amounting to 3000 MWthermal x year, at the end of this period, weighs less, as much as the 

equivalent of the energy output in question, i.e. [based on the equivalence between mass and 

energy], about 1 kg. This is of course insignificant as compared to millions of tons (whatever 

shall be the approximate amount) of coal or petroleum that would be fired into the plant of 

concern, but well detectable as compared to about a ton of plutonium-239, or uranium-235 

needed to be depleted in a nuclear power plant of 3000 MWthermal through a period of one 

year.  

 

In a similar way, a compressed spring should be heavier than the “same spring” when 

stretched out; or the gas in a room at a high temperature should weigh more than the “same 

gas” at a lower temperature, etc.  

 

All these, already happen to be well established facts. Thus, any proper mass weighs less, 

after releasing energy, or conversely it shall weigh more, after piling up an extra amount of 

internal energy. 

 

Recall that in the case of a nuclear fission, we just referred to, it is the increase in the binding 

energy of the nucleons in the nuclei of the fission products, in comparison with the binding 

energy of the nucleons in the original plutonium-239, or uranium-235 nuclei, in question, 

which is responsible of the nuclear energy released; thence the nuclear binding energy has 

well a mass deficit counterpart. Why shouldn’t the bound electron? Thus, once again, it 

seems unconceivable, not to associate with the bound electron, a mass deficit. 
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Below, we first review the inventory marked out by the bound electron’s over all relativistic 

mass (Section 2). The constancy of this, at a given energy level, is a must imposed by the 

energy conservation law, yielding via differentiation, a novel equation for the electron’s 

motion around the nucleus, as a simplest framework (which we call the Modified Bohr Atom 

Model), we can set up, following our approach (Section 3). This provides us, with the 

possibility of getting a quick, but exact expression regarding the new energy levels (as far as 

the principal quantum numbers they involve, are concerned) (Sections 4 and 5). The idea of 

the change of the metric neraby the nucleus, immediately follows up as a main conclusion of 

our approach (Section 6).  

 

2.  THE OVERALL MASS OF THE ELECTRON IN THE ATOM ON A GIVEN        

LOCATION, IS ITS PROPER MASS DECREASED AS MUCH AS ITS BINDING 

ENERGY AT REST, AT THIS LOCATION, AND INCREASED BY THE LORENTZ 

FACTOR, DUE TO ITS MOTION  

 

Based on the foregoing discussion, henceforth, we should take into account the proper mass 

decrease of the bound electron, as implied by the special theroy of relativity. 

 

More specifically we can think that, the hydrogen atom is made in two steps:  

 

1) We bring the electron from infinity to a given distance from the nucleus (supposing for 

simplicity, yet without any loss of generality, that the proton is fixed); owing to the 

equivalence between mass and energy, this process reduces the electron’s proper mass as 

much as its potential energy at this location.  

 

2) Next, we deliver to the electron its orbital kinetic energy (however, the orbit, may be 

conceived); this process, in the familiar relativistic way, increases the already decreased 

proper mass, by the usual Lorentz factor.   

  

Thus Dirac, just like Sommerfeld had considered the second process, but not the first one.  

 

It is in effect known that, Dirac’s predictions do not cover thoroughly the experimental 

results.
6,7,8,9 

The doublets due to spin-orbit interaction are indeed somewhat narrower than 

predicted. There is also, though very little, a shift of energy levels, upward (whereas the 

“relativistic quantum mechanics”, just like “Sommerfeld’s approach”,  predicts a shift of the 

Bohr energy, downward).  

 

Theoretical explanations provided for these anomalies, such as a perturbing repulsive 

interaction between the electron and the nucleus, do not seem to cover thoroughly the reality. 

 

In this communication we are going to show that, the anomalies in question are mostly due to 

the fact that, Dirac’s theory did not take into account the proper mass decrease of the bound 

electron. The order of magnitude of the correction that we are going to calculate based on 

this, turns out to be just as much as the observed deviation from the classical Dirac theory. 
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We are going to base our approach on just the hydrogenlike atoms. Further for simplicity 

(though without any loss of generality), we shall neglect the mass deficiency undergone by the 

proton in the hydrogen atom, as compared to that displayed by the electron; along the same 

line, we can consider that, the reduced mass of the electron and the proton, is the mass of the 

electron, straight.    

 

We thus make the following definitions. 

 

0r   :  distance of the electron to the nucleus,  

0m  :  the electron’s rest mass at infinity 

)r(m 00  :  the electron’s rest mass at a distance 0r  from the nucleus  

)r(m 0  :  the electron’s overall mass (which is its mass at infinity, decreased as much  as its  

potential energy, and increased based on the special theory of relativity, due to its 

“translational” motion) at 0r  

0v  :  the tangential velocity of the electron on the orbit (however the motion or the orbit 

may be conceived), at the location 0r   

0c  :  the velocity of light in empty space 

e :  the charge intensity of the electron or that of the proton 

Z :  the number of protons of the nucleus 

 

Thence the overall mass )r(m 0  of the electron, at a distance 0r  from the nucleus bearing Z 

protons, can be written as 

               OrbitanonConsant
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   ; (1) 

 

(overall mass of the electron, in a hydrogenlike atom, written by the author) 

 

here, )crm/(Ze1 2

000

2

  is the decrease factor of the proper mass 0m  of the electron, when 

bound, at rest, to the nucleus of concern; thus 0

2 r/Ze  as usual, is the potential energy, or the 

same, the binding energy at rest of the electron to this nucleus, at a distance 0r  from it, which 

makes that )crm/(Ze 2

000

2

  is the ratio of the potential energy to the original proper energy. 

 

According to our approach, it is in fact the decreased mass at rest, )r(m 00  at 0r , which is 

increased by the Lorentz factor 1/ 2

0

2

0 c/v1 , due to the electron’s motion around the 

nucleus (and not the proper mass 0m , measured in empty space, free of any field).    
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Thus Dirac’s theory, just like Sommerfeld’s approach, misses the decrease factor 

)crm/(Ze1 2

000

2

  we introduced in Eq.(1). This factor, as will soon become clear, is very 

small for small Z’s, but may become quite important at big Z’s; anyway (as we shall 

elaborate below) the inverse of it is amazingly equal to the square of the Lorentz factor 

meaning that the overall mass (contrary to the actual wisdom and related mathematical 

formulation), is always smaller than 0m .  

 

Note that setting the RHS of Eq.(1) equal to a constant, determines the orbit equation of the 

electron around the nucleus, given that on the orbit, whether this is a circle, or an ellipse, or 

else (anyway we can conceive), the total energy, i.e. 2

00 c)r(m , ought to be constant.  

 

One way of quickly assessing the effect of taking into account the mass decrease of the 

proper mass of the electron, is to use the Bohr Atom Model, straight. Thus the ratio 

)crm/(Ze 2

000

2


 can, as a first approach be evaluated, using the familiar relationship  

 
22

00

22 hnrmZe4  
 ,            (2) 

 

where n is the Bohr quantum number. 

 

Below, we shall refine our assessment by writing a Modified Bohr Theory, chiefly based on 

Eq.(1). 

 

Via Eq.(2), we can now evaluate the factor )crm/(Ze1 2

000

2

 , appearing in Eq.(1), 

essentially for small Z’s: 
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where   is the fine structure coefficient, i.e. 
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1
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2

0

2
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  .             (4) 

 

On the other hand, the mass dilation factor 1/ 2

0

2

0 c/v1 , can also be quickly evaluated, still 

for small Z’s,  based on the results of Bohr Atom Model, i.e. Eq.(2), and the expression for 

0v , the velocity of the electron, at the given energy level denominated by n, or 
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So, as we see, not only that the mass decrease factor and the Lorentz factor bear the same 

order of magnitude, but also, the magnitude of the correction 222 n/Z  , due to the mass 

decrease is already twice as that due to the Lorentz factor; moreover the mass decrease 

correction works as to cancel the Lorentz dilation.  

 

Eqs. (3) and (6), for small Z’s, yield the over all mass )r(m 0  at 0r : 

 

         )Z
n2

1
1(m

c

v
1

crm

Ze
1

m)r(m 22
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2

0

2

0

2
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2
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



 



 .                                            (7) 

  

(overall mass of the electron in an  

 hydrogenlike atom, written by the author) 

 

The difference between Dirac’s overall mass (the proper mass dilated by the Lorentz factor), 

and our’s, is then 222

0 n/Zm 
. [Dirac’s overall mass is larger than 0m  by 

)n2/(Zm 222

0 
; our’s is smaller than 0m  by still )n2/(Zm 222

0 
.]  

 

At this stage it would be interesting to investigate the effect of the mass decrease of the bound 

electron, based on a simplest model we can develop, by modifying Bohr Atom Model, based 

on Eq.(1).  

 

3. THE INVESTIGATION OF THE EFFECT OF MASS DECREASE OF  

    THE ELECTRON, BASED ON A MODIFIED BOHR ATOM MODEL 

 

The differentiation of Eq.(1) yields the following noteworthy, general orbit equation, for the 

motion of the electron around the nucleus: 

0

0

0

2
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2

2

0
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0

2
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2
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v

crm
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1

c

v
1
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
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





   .                                                                  (8) 

                           

One can transform this equation into a vector equation, with not much pain, and show that the 

RHS, is accordingly transformed into the acceleration (vector) of the electron on the orbit. 

 

The orbit would be as customary elliptical, for a small Z, thus a small v; otherwise it is open; 

in other words, the perihelion of it, shall precess throughout the motion. 

 

Note that Eq.(8), is different than that written by Sommerfeld (due to the fact that, he had not 

considered the mass decrease of the bound electron).  

 

It can be shown that the [(-) RHS] of Eq.(8) is equal to the magnitude of the acceleration.  At 

the limiting case, for a circular motion of the electron around the proton this quantity shall 

thus become 
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0
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We can consequently rewrite Eq.(8), using Eqs. (1) and (9), for a circular orbit: 
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  (equation written by the author for the electron  

   moving on a circular orbit around the nucleus)  

 

This is anyway the same relationship as that proposed by Bohr, except that the electrostatic 

force intensity is now decreased by the factor 2

0

2

0 c/v1 . 

 

Next, we should write the Bohr’s postulate in an appropriate way. For this, it would be useful 

to recall de Broglie’s doctorate thesis.
10

 Along this approach, Bohr’s postulate reduces to the 

expression of de Broglie wave (associated with the electron’s motion), confined (thus, like 

any classical wave, bound to be quantized) on the orbit. But the momentum of the electron 

entering the de Broglie’s relationship, must be the local relativistic momentum, where then 

the “mass” should be taken as the overall mass, we defined at the stage of Eq.(1).   

 

Thus we propose to write 

 

nhrv)r(m2 000  , n=1, 2, 3, … .        (11) 

 

  (de Broglie’s relationship rewritten by the author,  instead 

   of Bohr’s postulate, taking into account  the overall mass 

   decrease of the bound and confined electron)  

   

We call the set of equations Eqs. (8) and (11) the Modified Bohr Equations. The two 

unknowns n0v  and n0r  (to be associated with the nth quantum level), for circular orbits can 

then be found to be 

0
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These two simple relationships are interesting in several ways.  
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First of all, for small Z’s we land back to Bohr’s results. The orbit velocity, n0v  as expected, 

cannot increase beyond the velocity of light, no matter how big Z is (cf. Figure 1).  As Z 

increases, the orbit radius n0r  decreases to draw a minimum at n/Z = 1(cf. Figure 2); the 

value of the radius minn0r  at the minimum, is )cm/(Ze2 2

00

2

 , where then, half of the proper 

mass of the electron would disappear; minn0r  for n=1, becomes 0.77 x 10
-10

 cm, i.e. ~ 1/100
th

 

of the Bohr Radius; the value of the velocity minn0v  at the minimum minn0r  is 2/c0 ; the 

subsequent increase of minn0r  for big Z’s is practically linear. 

 

The reason n0r  decreases for small Z’s, is that (though the magnitude of the effect of the mass 

decrease of the bound electron is greater than the magnitude of the effect of the relaticvisitic 

mass increase), the mass change is anyway negligible; thus the decrease is basically due to 

the increase of Z; but for big Z’s, despite the Z increase, the mass decrease becomes more 

important [cf. Eq.(7)], which altogether, in harmony with Eq.(2), pulls the orbit outward. 

Following the linear increase for big Z’s, n0r  finally catches up, with is value for Z=1, when 

Z  reaches the hypothetical value of  22 /n  , i.e. ~ 137
2 

(cf. Figure 3). 

 

We can further elaborate on the ratio taking place at the RHS of Eq.(1): 
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clearly showing that the winning effect is (not the relativistic mass dilation, but) the proper 

mass decrease, due to the binding. 

  

On the other hand, the total energy n0E  of the nth level shall be calculated from 
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or  
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   (total energy written by the author, taking 

             into account the overall mass decrease of the electron)  
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This quantity, decreases with increasing Z, to reach asymtotically the floor of - 2

00 cm  . 

According to this approach, it is remarkable to note that, there is practically no nucleus 

charge no matter how big this can be, that can consume, in its entirety, the proper mass of the 

electron, through the binding process, we visualized (Figure 3). There is further an inflexion 

point of n0E  versus Z , at 2/1Z  .    

 

Eq.(16), for small Z’s, yields 
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(approximate expression for the total energy written by the author, 

 taking into account the overall mass decrease of the electron)  

 

Via a similar equation to Eq.(15), set up within the frame of our approach [cf. Eq.(8)], where 

though, we deliberately overlook the proper mass decrease, just the way it had been so far 

conceived,
†
 we can write the following (the last part of which is approximated for small Z’s, 

based on second order Taylor expansion): 

                                                 
†
  Eq.(8), via  Eq.(9), in this case becomes 
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   This can also be written as 
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   We have to consider Eq.(ii), together with Eq.(11), written for the relativistic mass m, i.e. 

      nhrmv2 00  .                 (iv) 

   Note that Eqs. (ii) and (iv), display exactly the same look as that of our rigorous equations Eqs. (10) and (11), 

were m taken for (not the relativistic mass only, but, as originally) the overall mass [cf. Eq.(1)]. Furthermore 

Eqs. (ii) and (iv), also display exactly the same look as that of the set of equations written by Sommerfeld, if 

now we deliberately wrote 
0m , instead of the relativistic mass m, thus yielding (the Sommerfeld set) 
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Eq.(13)]. So are (as elaborated in the text), the respective total energies. The Sommerfeld set, according to our 

approach is anyhow incorrect, not only because the grand master did not account for the mass deficit of the 

bound electron, but also he presumably considered the Bohr postulate, based solely on the rest mass of the 

electron, thence in contradiction with the de Broglie’s relationship, suggesting instead, the use of the 

relativistic mass of the electron. It is further interesting to note that if Sommerfeld, next to his equation of 

motion, i.e.   2

0

2

0

2

0

2

00

2

0

2 c/vc/v1mrZe //  
, considered the Bohr’s postulate by using (not the rest mass, 

but) the relativistic mass of the electron, to write   nhrvc/v1m2 00

2

0

2

00 /  
, then he would have formally 

fallen back to the very original set of Bohr, therefore locking himself in a situation where he can get no  

information about the relativistic behavior of the electron.  
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
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
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















   (18)  

                       

                       (total energy, written by the author,  taking into account the relativistic mass   

increase of the  electron, but deliberately overlooking the proper mass 

decrease of the bound electron, yielding the Sommerfeld-Dirac result)  

 

According to our approach this relationship is obviously erroneous, but we can consider it as 

a tool to check the accuracy of our derivation, at the sensivity level [10
-5 

x (the hydrogenen 

ionization energy)], in comparison with Dirac’s result. Note anyway that the RHS of Eq.(18) 

well happens to be Sommerfeld’s relativisitic result.
2
 [Note further that as known, the 

Sommerfeld’s result and the Dirac’s result coincide regarding the principal quantum 

numbers, which makes that the RHS of Eq.(18), as we shall see below, also represents the 

Dirac’s result, as well].   

 

4. CHECKING THE ACCURACY OF OUR APPROACH 

 

The total energy DiracE , taking into account both the relativistic effect and the spin-orbit 

interaction, given by Dirac, for nth principal level, is  

 

  













































 

n4

3

2

1
j

1

n

Z
1

n2

Zcm
E

22

2

222

00

Dirac ,  
2

1
j  l ,     (19) 

 

where l  is the quantum number associated with the angular momentum of the electron. 

 

In Dirac’s theory, the proper mass of the electron in motion around the nucleus, being dilated 

due to the Lorentz tranformation, the most probable distance of it, to the nucleus, is decreased 

as much [for a quick check, cf. Eq.(2)].  

 

For the ground state, for which n=1 ( l =0), and the spin-orbit interaction term vanishes, the 

difference between the classical Bohr’s ground energy, and that of Dirac, reduces to the 

difference lReE , coming from just the relativistic effect. 

 

This difference can be extracted from Eq.(19) to be   

 

        ev10x81.1Z
n4

1
EE 422

2nB0lRe

  for n=1 .        (20) 

                                     (relativistic shift, as referred to  

                                      Bohr’ stotal  energy, from Dirac’s approach)  
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where we made use of the magnitude of the classical Bohr’s ground energy nB0E , at the nth 

level, i.e. 

  22

2

2

00

nB0 Z
n2

cm
E 13.6 ev for n=1, Z=1 .       (21) 

 

We can propose to calculate the same quantity, through a usual perturbation calculation, 

based on the Schrodinger framework, presented in text books.
11

 

 

This yields  

 22

2nB0lRe Z
n4

5
EE   .          (22) 

                       (relativistic shift, as referred to Bohr’s total energy, 

                                        from the usual perturbation calculation,  

                                        based on the Schrodinger’s framework) 

 

Note that the perturbation calculation in question overestimates lReE  by a factor of five. 

Note further that we could have obtained the same result from a set up similar to Eq.(18), 

where we would evaluate both the potential energy and the Lorentz factor, based on the 

straight Bohr Atom Model. 

 

On the other hand, our Modified Bohr Theory, if just the relativisitic mass increase is 

considered (i.e. the mass decrease of the bound electron is not taken into account, then), 

furnishes the same lReE  as that furnished by Dirac’s theory [cf. Eqs. (19) and (20)].  

 

Thus from Eq.(18) (at the stage of which we have deliberately overlooked the mass decrease 

of the bound electron) we have  

 

         22

20nBRel αZ
4n

1
EΔE    .       (24) 

                                                 (relativistic shift as referred to Bohr’s total energy,  

                                                  from our Modified Bohr Atom Model, where  

                                                  we have deliberately omitted the mass decrease)   

 

Thus regarding lReE , our Modified Bohr Theory has the capacity of furnishing exactly the 

same result as that furnished by Dirac solution, if geared alike.
‡
 

                                                 
‡
    Note that the magnitude of our result 

lReE  [cf.Eq.(24)], can be cross checked immediately, via replacing 

brutally 
0m of Eq.(21), by  )n2/(Z1m 222

0 
 [cf.Eq.(7)]: 

22

2nB0lRe Z
n2

1
EE    .        

                                           (from brutally replacing 
0m  with  our “overall mass”, 

                                            in the expression of the Bohr’s total energy)   

        

       This quantity is twice as the rigorous energy shift we have calculated. However it still is closer to the 

correct result than that furnished by the perturbation theory [cf. Eq.(22)]. We will use this outcome below, 

to conclude that the effect of mass decrease of the bound electron on the spin-orbit interaction is about the 

same as the effect of mass decrease of the bound electron on the classical relativistic correction.   
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This can be accepted as a check of the validity and the accuracy of our Modified Bohr Atom 

Model, now toward a usage of it to assess promptly the effect of taking into account the 

decrease of the proper mass of the bound electron, together with the relativistic effect, this 

will display through its motion around the nucleus.  

 

At this stage it would be interesting to sketch the electron’s total energy in H atom, predicted 

by respectively Bohr [Eq.(21)], Sommerfeld-Dirac [(Eq.18)], and by ourselves [Eq.(16)], 

versus Z; this is done in Figure 4. Furhtermore we sketch in Figure 5, the correponding radii, 

in comparison with each other.  

 

It is particularly interesting to note that, the magnitude of the total energy we predict, cannot 

go beyond  2

00 cm  , no matter how big Z is. Whereas that predicted by Sommerfeld-Dirac, 

goes beyond 2

00 cm  , even faster than that of Bohr, with respect to increasing Z’s. 

 

5. MASS DECREASE CORRECTION TO DIRAC’S EQUATION 

 

According to our approach [cf. Eqs. (17) and (18)], we expect that, as referred to Bohr’s 

classical result, the total energy should be shifted upward, and this, just as much as the 

“downward shifting”, we would predict, via the relativistic effect, only [cf. Eq.(19)]; the 

magnitude of the overall (upward) shift shiftE  we predict, as referred to the Dirac’s theory,  

thus )n2/(ZE 222

B0   [cf. Eqs. (6) and (7)].  

 

Therefore, for n=1, B0E  should be decreased altogether, as much as 4/ZE 22

B0  , i.e.    

1.81x 10
-4 

ev.  

 

We can thence bring a first correction to Dirac total energy, by adding to the RHS of  

Eq.(19), the quantity 2 x [the RHS  of Eq.(24)], i.e. )n2/(ZE 222

0  :  
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














 

n4

3

2

1
j

1

n

Z

n2

Z
1

n2

Zcm
E

22

2

22

2

222

00

)Corrected(Dirac , 
2

1
j  l  .          (25) 

(the corrected Dirac energy, via taking  into account 

 the mass decrease of the electron, due to the binding) 

 

We expect Eq.(25) to be valid for small Z’s, for all n’s, along with l =0.  

 

Based on Eq.(25) we can now calulate the energy shift shiftE  (upward), for instance,           

for n=2: 
§
   

                                                 
§
  Recall that the shift in question, is a correction to be brought to Dirac’s prediction; the corresponding shift 

referred to the classical Bohr’s prediction, would be half of the first one.   
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        15

22

22

2

222

00

shift cm182.0ev10x.3.2ev
32

1

137

1
6.13

n2

Z

n2

Zcm
E  























 
 .  (26)  

 

     (energy shift correction for n=2, to be brought to Dirac’s  

     solution, because of the mass decrease of the bound electron) 

 

This, remarkably points to the right order of magnitude of the upward displacement of the 2S 

level, conjectured already in 1937.
7  

 

Furthermore, based on Eqs.(25) and (26), one can immediately sense that 2/1

2 S2  and  2/1

2 P2  

levels, contrary to Dirac’s theory, but in accordance with the experimental results, 

differentiate from each other. This result is in harmony with the outlook of the Lamb shift
6
 

(noticed more than half a century ago), though quantitatively, as we will right away check, 

the measured shift between the 2/1

2 S2  and 2/1

2 P2  levels, i.e. 0.033 cm
-1

, remains about ten 

times narrower than the outcome of Eq.(26).  

 

The order of magnitude of the shift drawn by our approach, about the 2/1

2 S2  and the 2/1

2 P2  

levels (as referred to Dirac’s theory) can be assessed, based on a simple perturbation 

calculation to be achieved on the basis of Dirac Equation, where the mass decrease of the 

bound electron shall be incorporated. Or, in an even easier way (leaving for the time being, 

aside the spin-orbit interaction), we can consider straight, the Schrodinger equation, since the 

energy shift due to the mass decrease effect we focus on, should be expected to manifest 

practically in the same way, in both Dirac and  Schrodinger descriptions, and it seems more 

practical to consider the second one.  

 

However, as established above [cf. Eq.(22)], such a calculation, leads to a considerable 

overestimation (roughly, by a factor of about five).  

 

Nonetheless, the perturbational method we propose, can still be considered as a fast 

conventional mathematical tool of demonstrating the fact that, the mass decrease effect 

indeed yields the differentiation of the 2/1

2 S2  and 2/1

2 P2  levels.  

 

Thus here is the Schrodinger Equation, written (with the familiar notation) for the hydrogen 

atom, taking into account the mass decrease of the bound electron: 

 

             0)r(
r

eZ
EE

cr

Ze
1

h

8
)r( 0

0

2

0

shift02

000

2

2

0

2

0

2 



































   ;     (27) 

                         

(Schrodinger Equation written by the author, for hydrogern atom,  

 taking into account the mass decrease of the bound electron)  

 

0  is the reduced mass of the atom; 0r  the distance of the electron to the center of mass of 

the electron and the proton; )r( 0  is the wave function to be associated with the atom where 

the mass decrease is taken into account, and shiftE  is the total energy shift, due to the mass 

decrease of the bound electron, in comparison with the classical total energy 0E . 
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shiftE  can thus be calculated to be 
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V
1

drdsinrV
c

VE

E
j

j

j

,  (28) 

                 

where )r( 0nljm0 j
 , or in short 

jnljm0  is the wave function to be associated with the classical 

Schrodinger H atom, at the state described by the given quantum numbers, and V  is  

0

2

r

Ze
V  .          (29) 

 

We would like to stress that shiftE  of Eq.(28) is a positive, i.e. an upward contribution. 

 

Eq.(28) yields 

 









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
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


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
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n4

3
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2
2

n

EZ
E

2

nB0

2

shift

ll
     .      (30) 

                            (energy shift, upward, due to the mass decrease  

                             of the bound electron, calculated via perturbation) 

 

Now, we can evaluate this quantity for the 2S (n=2, l=0) and 2P (n=2, l=1) levels:  

 

 1313
4x2

EZ
E

2

nB0

2
0,2n

shift 



 l

 ,            (31) 
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


















3

7

3

7

4x2

EZ
E

2

nB0

2
1,2n

shift

l
 .          (32) 

 

If there were no other effects, then the difference of these two quantities, would constitute the 

Lamb shift, straight. However, were the perturbation calculation we visualized correct, then 

the RHS result Eq.(31), should have been )n2/(EZ 22

nB0

2   [cf. (Eq.(26)]; thus, the RHS of 

Eq.(31) is overestimated by a factor of ( 1313 ), i.e. 9.4. 

 

Nonetheless this result is well in conformity with the overestimation (by a factor of five) of 

the perturbational result of the RHS of Eq.(22), and the fact that the magnitude of the mass 

decrease effect is about twice that of the relativistic effect [cf. Eqs.(6) and (7)], satisfactorily 

making that 2x549 . . 

 

Thus, despite this inherent coherence, the magnitude furnished by the perturbation calculation 

happens to be a far off in regards to the precision we would like to attain. However this 

calculation still clearly proves the splitting of the Dirac’s identical 2S and 2P levels.  
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Anyhow recall that, as discussed through Section 4 above, we have, through our Modified 

Bohr Approach, well determined seemingly the correct solution that one would obtain by 

solving the Modified Dirac Equation, at least for energy levels bearing just principal quantum 

numbers [cf. Eqs. (24) and (25)].  

 

Note that the differenciation of the two levels happens to be chiefly due to the the shift of 

2/1

2 S2  level, given that the l shift (for n=2), is about 10% of  the corresponding s shift.   

 

One other thing is that the spin-orbit interaction term too, should be affected by the mass 

decrease of the bound electron. However, this term vanishes for l=0; thus it has no effect on 

the 2S level shift. Moreover the magnitude of it, for higher l’s, is much smaller, as compared 

to that of the relativistic effect to be associated with S levels, at a given principal level. 

 

Note that our corrected Dirac Equation, i.e. Eq.(25), even in the case we should consider the 

spin-orbit interaction term, within the frame of our original approach, consisting in the mass 

decrease of the bound electron, still seems to be valid, and the reason is the following.  

 

The relativistic correction RelE  to be brought to the classical Schrodinger solution, within 

the frame of a perturbation calculation, was recalled at the stage of Eq.(22), i.e.  

 

22

2nB0Rel Z
n4

5
EE     (l=0)  .         (22) 

                       (from the usual perturbation calculation  

                             based on the Schrodinger’s framework) 

 

When a similar calculation is performed to evaluate the shift OrbitSpinE  , that will be caused 

by the spin-orbit interaction, one comes out with
11 

 

 
)1)(21(n2

43)1()1j(j
ZEE 22

nB0OrbitSpin



 

l/ll

/ll
 .       (33) 

 

The mass decrease of the bound electron, shall affect both quantities RelE  and OrbitSpinE  , 

through the parallel change of nB0E . These two quantites are then expected to be affected by 

the mass decrease of the bound electron, practically in the same amount (regardless the fact 

that the rigorous result cannot be guessed, based on such a reasoning). 

 

This is why we affirmed that our corrected Dirac Equation, i.e. Eq.(25), in the case we 

consider the spin-orbit interaction term, together with the mass decrease of the bound 

electron, still seems to be valid. Thus, through the main stream of our approach, we can leave 

aside any further details related to the spin-orbit interaction term, that would result from the 

mass decrease of the bound electron. 

 

At this point recall that the discrepancies between the classical Dirac theory and the 

experimental results, despite the huge effort displayed throughout more than half a century,  

are still not thoroughly resolved. Moreover, essentially speaking, what is kept in perpetual 

elaboration is the causes, already believed by then, which is fine for most of the components 

of the shift, but seemingly not sufficient.   
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Thus following our approach, our claim is that, discrepancies between the classical Dirac 

theory and the experimental results, such as Lamb shift, as well as the fact that the doublets 

due to spin-orbit interaction are somewhat are narrower than predicted by Dirac, are at least 

partly due to the mass decrease of the bound electron.  

 

Recall that the two leading believed causes of Lamb shift are vacuum polarization
12

 (i.e. 

increase of the nuclear Coulomb interaction at small distances), and self-energy
13, 14, 15, 16

 

(also, a short-distance effect). Recall further that, apart the Dirac relativistic effect, and the 

Lamb effect, other effects such as the Breit contribution (magnetic correlation effect), the 

reduced mass effect
17

 and the nuclear volume effect
18

 (due to the deviation from the point 

nucleus assumption), had been given consideration, throughout.
19, 20, 21, 22, 23, 24 

 

Though, before one elucidates, whether the mass decrease of the bound electron indeed 

indeed causes an upward shift of the Dirac’s energy levels, it seems useless to discuss the 

cumbersome details and the validity of the previous considerations and speculations.  

 

Hence at this stage, we believe, what is to be fundamentally done, is to decide whether or not 

a mass decrease comes into play, because of the binding of the electron to the nucleus; only 

then, it seems rational to review in details, different effects together with their accurate 

contributions, and eventually attack, the general solution of the Modified Dirac’s equation to 

be set following our approach.  

 

As discussed in details through the introduction of this article, our claim is that, it is a must 

that the bound electron’s proper mass decreases, and this is simply because of the special 

thoery of relativity (more precisely because of the relativisitic equivalence between mass  and 

energy). But if so, we better modify our present conception about matter, and this is what we 

conclude with, below. 

 

6. CONCLUSION:  CHANGE OF THE METRIC NEARBY THE NUCLEUS 

 

Our approach poses no doubt, problems about our actual conception of matter. What does it 

mean that the bound electron looses some of its proper mass, but preserves its charged 

particle identity, together with its original charge intensity?  

 

However it may be, if so, based on the equivalence between mass and energy,
 
one immediate 

conclusion we can retrieve from our approach, is that (whatever it may be) the internal 

mechanism of the bound electron slows down, in fact, just like the decay rate of a bound 

muon would retard.
25, 26, 27, 28, 29, 30

  

 

Note that we were able to predict the bound muon decay rate retardation (even before we had 

discovered in the literature, the related experimental data), by the fact that, when bound, the 

internal dynamics of the muon (basically composed of an electron, a neutrino and an 

antineutrino), should get weaker, thus slower, and this just as much as the binding energy, the 

muon displays vis-à-vis the nucleus.
31

  

 

Thus the muon, when bound, looses some of its proper mass, but preserves its charged 

particle identity, together with its original charge intensity. 

 

We may conceive the change a bound electron undergoes, in a  similar way.  
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Thus, whatever it may be, the bound electron’s internal mechanism  slows down, and this as 

much as the binding energy, the electron displays vis-à-vis the nucleus. 

 

Accordingly, we can conceive the “mass of the electron”, as just the internal energy of its 

“charge”, however this energy is installed, and whatever the “charge” is. 

 

One other interesting result our approach accordingly yields, is the change of the metric near 

by the nucleus.  

 

We have indeed previously shown that, in any wave-like object, the size of space 0R  in which 

the object is installed, the period of time 0T , and the characteristic mass 0M , to be associated 

with the internal dynamics of the object are, owing to the orchestration of electric charges, 

interrelated two by two, in just a given manner, in fact in just the same way the simple Bohr 

Atom Model delineates.
32, 33, 34, 35, 36

 This leads to the invariance of the closed form, 
1

0

2

00 TRM ,  in regards to an arbitrary change in 0M , or the same, the relativisitic total energy.  

 

It is fortunate that the quantity 1

0

2

00 TRM  also happens to be a relativisitic invariant, if the 

wave-like object, in hand were brought to a uniform translational motion. The same holds 

regarding the quantity 2

000E RM , where 0E  is the total energy of the wave-like object of 

concern.  

 

Note further that the quantity 1

0

2

00 TRM , quantum mechanically, happens to be strapped to the 

Planck Constant h, just like the quantity 2

000E RM  happens to be strapped to 2h . 

 

Thus, owing to the orchestration of electric charges, 0R  and 0M  are installed as inversely 

proportional to each other [for a hydrogenlike atom, for instance, cf. Eq.(2)]. (Similarly 0R  

and 0T ,  are installed proportionally to each other, and 0R  and 0M , are installed as inversely 

proportional to each other.) 

 

If 0R , 0M  and 0T , were quantities to be associated with the internal dynamics of the electron, 

in order to be in harmony with the wave-like property, we just mentioned, as well as the 

special theory of relativity, “any change in the proper mass” of the bound electron, would 

yield a streching of the size of the electron, and a retardation of its internal mechanism, no 

matter what this mechanism is, and how it is built.  

 

Within the atom, one fundamental unit length can be considered as the size of the electron; 

likewise a unit period of time can be considered as the period of the internal mechanism of the 

electron.  

 

Thus, the change of the size, as well as a concurrent change of the period of time of the 

internal mechanism of the bound electron, as referred to an outside observer, draws a change 

in the metric, within the atom, just like the change in the metric induced by a gravitational 

field.
5    
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In other words a local observer (or a local recording), and a distant observer shall assess, 

atomistic phemomena differently from each other. The difference is very small for small Z’s, 

but becomes important as Z increases. Thus for instance, our time will be different than the 

atomic time (the atomic time runs slower than our’s), and this is why we wanted to precise 

the subscript “0” regarding the quantities we introduced, where we generally aimed to mean 

that, these quantities belong to the local frame of reference, and not our’s. 

 

It is amazing that the approach we presented herein can be applied to the motion of the 

celestial bodies, in a gravitational field as well, based on an equation similar to Eq.(1), along 

however exactly the same philosophy we developed, to predict very satisfactorily, the end 

results of the general theroy of relativity.
37, 38
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